[1]

Waddington CH. 1942. Canalization of development and the inheritance of acquired characters. Nature 150:563−65

doi: 10.1038/150563a0
[2]

Henderson IR, Jacobsen SE. 2007. Epigenetic inheritance in plants. Nature 447:418−24

doi: 10.1038/nature05917
[3]

Gardiner-Garden M, Sved JA, Frommer M. 1992. Methylation sites in angiosperm genes. Journal of Molecular Evolution 34:219−30

doi: 10.1007/BF00162971
[4]

Lister R, O'Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, et al. 2008. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523−36

doi: 10.1016/j.cell.2008.03.029
[5]

Lang Z, Lei M, Wang X, Tang K, Miki D, et al. 2015. The methyl-CpG-binding protein MBD7 facilitates active DNA demethylation to limit DNA hyper-methylation and transcriptional gene silencing. Molecular Cell 57:971−83

doi: 10.1016/j.molcel.2015.01.009
[6]

Bewick AJ. Schmitz RJ. 2017. Gene body DNA methylation in plants. Current Opinion in Plant Biology 36:103−10

doi: 10.1016/j.pbi.2016.12.007
[7]

Illingworth RS, Bird AP. 2009. CpG islands – 'A rough guide'. Febs Letters 583:1713−20

doi: 10.1016/j.febslet.2009.04.012
[8]

Vanyushin BF, Bakeeva LE, Zamyatnina VA, Aleksandrushkina NI. 2004. Apoptosis in plants: specific features of plant apoptotic cells and effect of various factors and agents. International Review of Cytology 233:135−79

doi: 10.1016/S0074-7696(04)33004-4
[9]

Gardiner-Garden M, Frommer M. 1987. CpG Islands in vertebrate genomes. Journal of Molecular Biology 196:261−82

doi: 10.1016/0022-2836(87)90689-9
[10]

Antequera F. 2007. CpG Islands and DNA Methylation. In eLS. John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470015902.a0005027.pub2

[11]

Ashikawa, I. 2001. Gene-associated CpG islands in plants as revealed by analyses of genomic sequences. The Plant Journal 26:617−25

doi: 10.1046/j.1365-313x.2001.01062.x
[12]

Ashikawa I. 2002. Gene-associated CpG islands and the expression pattern of genes in rice. DNA Research 9:131−4

doi: 10.1093/dnares/9.4.131
[13]

Zemach A, Grafi G. 2007. Methyl-CpG-binding domain proteins in plants: interpreters of DNA methylation. Trends in Plant Science 12:80−85

doi: 10.1016/j.tplants.2006.12.004
[14]

Du Q, Luu PL, Stirzaker C, Clark SJ. 2015. Methyl-CpG-binding domain proteins: readers of the epigenome. Epigenomics 7:1051−73

doi: 10.2217/epi.15.39
[15]

Das PM, Singal R. 2004. DNA methylation and cancer. Journal of Clinical Oncology 22:4632−42

doi: 10.1200/JCO.2004.07.151
[16]

Meehan RR, Lewis JD, McKay S, Kleiner EL, Bird AP. 1989. Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs. Cell 58:499−507

doi: 10.1016/0092-8674(89)90430-3
[17]

Hendrich B, Bird A. 1998. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Molecular and Cellular Biology 18:6538−47

doi: 10.1128/MCB.18.11.6538
[18]

Hung MS, Shen C. 2003. Eukaryotic methyl-CpG-binding domain proteins and chromatin modification. Eukaryotic Cell 2:841−46

doi: 10.1128/EC.2.5.841-846.2003
[19]

Hardcastle TJ. 2013. High-throughput sequencing of cytosine methylation in plant DNA. Plant Methods 9:9

doi: 10.1186/1746-4811-9-9
[20]

Aberg KA, Chan RF, Xie L, Shabalin AA, van den Oord EJCG. 2018. Methyl-CpG-Binding Domain Sequencing: MBD-seq. In DNA Methylation Protocols, Methods in Molecular Biology, ed. Tost J. 1708: XVIII, 704. New York: Humana Press, New York. https://doi.org/10.1007/978-1-4939-7481-8_10

[21]

Kim HJ, Haam K, Kang TW, Kim SY, Noh SM, et al. 2011. Epigenome signatures during gastric carcinogenesis detected by MBD-seq and RRBS technologies. Cancer Research 71:4803

doi: 10.1158/1538-7445.AM2011-4803
[22]

Lan X, Adams C, Landers M, Dudas M, Krissinger D, et al. 2011. High resolution detection and analysis of CpG dinucleotides methylation using MBD-Seq technology. Plos One 6:e22226

doi: 10.1371/journal.pone.0022226
[23]

Huang J, Soupir AC, Wang L. 2021. Cell-free DNA methylome profiling by mbd-seq with ultra-low input. Epigenetics

doi: 10.1080/15592294.2021.1896984
[24]

Kim HJ, Kang TW, Haam K, Kim M, Kim SK, et al. 2018. Whole genome MBD-seq and RRBS analyses reveal that hypermethylation of gastrointestinal hormone receptors is associated with gastric carcinogenesis. Experimental & Molecular Medicine 50:1−14

doi: 10.1038/s12276-018-0179-x
[25]

Leoncini PP, Vitullo P, Di Florio F, Tocco V, Cefalo MG, et al. 2018. Whole Genome MBD-seq reveals different CpG methylation patterns in Azacytidine-treated Juvenile Myelomonocytic Leukaemia (JMML) patients. British Journal of Haematology 182:909−12

doi: 10.1111/bjh.14876
[26]

Huang J. 2011. Development of the high throughput DNA methylation technology based on the methyl-binding protein-MBD2b enrichment. Master's Thesis. Shanghai Jiao Tong University (In Chinese with English Abstract)

[27]

Netherlands S. (2008). Methylation-specific PCR (MSP). In Encyclopedia of Genetics Genomics Proteomics and Informatics. Netherlands: Springer, Dordrecht. pp. 1199 https://doi.org/10.1007/978-1-4020-6754-9_10270

[28]

Kubota T, Das S, Christian SL, Baylin SB, Herman JG, et al. 1997. Methylation-specific PCR simplifies imprinting analysis. Nature Genetics 16:16−17

doi: 10.1038/ng0597-16
[29]

Teotia S, Tang G. 2015. To bloom or not to bloom: role of microRNAs in plant flowering. Molecular Plant 8:359−77

doi: 10.1016/j.molp.2014.12.018
[30]

Bratzel F, Turck F. 2015. Molecular memories in the regulation of seasonal flowering: from competence to cessation. Genome Biology 16:192

doi: 10.1186/s13059-015-0770-6
[31]

Blümel M, Dally N, Jung C. 2015. Flowering time regulation in crops—what did we learn from Arabidopsis? Current Opinion in Biotechnology 32:121−29

doi: 10.1016/j.copbio.2014.11.023
[32]

Zografou T, Turck F. 2013. Epigenetic Control of Flowering Time. In Epigenetic Memory and Control in Plants. Signaling and Communication in Plants, eds. Grafi G, Ohad N. 18: IX, 261. Heidelberg: Springer, Berlin. pp. 77−105 https://doi.org/10.1007/978-3-642-35227-0_5

[33]

Soppe WJJ, Jacobsen SE, Alonso-Blanco C, Jackson JP, Kakutani T, et al. 2000. The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Molecular Cell 6:791−802

doi: 10.1016/S1097-2765(05)00090-0
[34]

Jacobsen SE, Meyerowitz EM. 1997. Hypermethylated S UPERMAN epigenetic alleles in Arabidopsis. Science 277:1100−3

doi: 10.1126/science.277.5329.1100
[35]

Kang D, Dai S, Gao K, Zhang F, Luo H. 2019a. Morphological variation of Five Cut Chrysanthemum Cultivars Induced by 5-Azacytidine Treatment. Hortscience 54:1208−16

doi: 10.21273/HORTSCI14012-18
[36]

Kang D, Dai S, Gao K, Zhang F, Luo H. 2019b. Morphological variation of Chrysanthemum lavandulifolium induced by 5-azaC treatment. Scientia Horticulturae 257:108645

doi: 10.1016/j.scienta.2019.108645
[37]

Li S, Li M, Li Z, Zhu Y, Ding H, et al. 2019. Effects of the silencing of CmMET1 by RNA interference in chrysanthemum (Chrysanthemum morifolium). Plant Biotechnology Reports 13:63−72

doi: 10.1007/s11816-019-00516-5
[38]

Dai S, Wang L, Wu N. 1998. RAPD analysis of acanthopanax senticosus genetic diversity. Advances in Natural Sciences:English version 8:467−68

[39]

Chen F, Chen P, Fang W, Li H. 1998. Cytogenetics of 1-hybrids between two small-headed cultivars of Dendranthema × grandiflorum and two wild dendranthema species. Acta Horticulturae Sinica 1998:3−5

[40]

Wang W. 2000. Chromosome in situ hybridization on the origin of Chrysanthemum. Doctoral dissertation. Beijing Forestry University.

[41]

Fu J, Wang L, Wang Y, Yang L, Yang Y, et al. 2014. Photoperiodic control of FT-like gene ClFT initiates flowering in Chrysanthemum lavandulifolium. Plant Physiology and Biochemistry 74:230−38

doi: 10.1016/j.plaphy.2013.11.004
[42]

Ma Y, Dai S, Fang X, Chen F, Shen . 2005. Nucleotide sequence of Dendranthema lavandulifolium floricaula/leafy-like gene (DFL) (AY672542). Molecular Plant Breeding 3:293−94

[43]

Huang H, Niu Y, Yang K, Dai SL. 2012. Isolation and expression analysis of a reference gene: ClTUA of Chrysanthemum lavandulifolium. Journal of Beijing Forestry University 34:112−17

[44]

Qi S, Yang L, Wen X, Hong Y, Song X, et al. 2016. Reference gene selection for RT-qPCR analysis of flower development in Chrysanthemum morifolium and Chrysanthemum lavandulifolium. Frontiers in Plant Science 7:287

doi: 10.3389/fpls.2016.00287
[45]

Fu J, Yang L, Dai S. 2015. Identification and characterization of the CONSTANS-like gene family in the short-day plant Chrysanthemum lavandulifolium. Molecular Genetics and Genomics 290:1039−54

doi: 10.1007/s00438-014-0977-3
[46]

Wen X, Qi S, Yang L, Hong Y, Dai S. 2019. Expression pattern of candidate genes in early capitulum morphogenesis of Chrysanthemum lavandulifolium. Scientia Horticulturae 252:332−41

doi: 10.1016/j.scienta.2019.03.064
[47]

Wang Y, Huang H, Ma Y, Fu J, Wang L, Dai S. 2014. Construction and de novo characterization of a transcriptome of Chrysanthemum lavandulifolium: analysis of gene expression patterns in floral bud emergence. Plant Cell, Tissue and Organ Culture 116:297−309

doi: 10.1007/s11240-013-0404-1
[48]

Ma Y, Fang X, Chen F, Dai S. 2008. DFL, a FLORICAULA/LEAFY homologue gene from Dendranthema lavandulifolium is expressed both in the vegetative and reproductive tissues. Plant Cell Reports 27:647−54

doi: 10.1007/s00299-007-0489-2
[49]

Yang L, Fu J, Qi S, Hong Y, Huang H, et al. 2017. Molecular cloning and function analysis of ClCRY1a and ClCRY1b, two genes in Chrysanthemum lavandulifolium that play vital roles in promoting floral transition. Gene 617:32−43

doi: 10.1016/j.gene.2017.02.020
[50]

Sun C, Deng X, Fang J, Chu C. 2007. An overview of flowering transition in higher plants. Hereditas1182−90

[51]

Zhang J, Mei L, Liu R, Khan MRG, Hu C. 2014. Possible involvement of locus-specific methylation on expression regulation of LEAFY homologous gene (ClLFY) during precocious trifoliate orange phase change process. PloS One 9:e88558

doi: 10.1371/journal.pone.0088558
[52]

Sun Q, Qiao J, Zhang S, He S, Shi Y, et al. 2018. Changes in DNA methylation assessed by genomic bisulfite sequencing suggest a role for DNA methylation in cotton fruiting branch development. PeerJ 6:e4945

doi: 10.7717/peerj.4945
[53]

Fieldes MA, Schaeffer SM, Krech MJ, Brown JCL. 2005. DNA hypomethylation in 5-azacytidine-induced Early-flowering lines of flax. Theoretical and Applied Genetics 111:136−49

doi: 10.1007/s00122-005-2005-9
[54]

Peraza-Echeverria S, Herrera-Valencia VA, Kay AJ. 2001. Detection of DNA methylation changes in micropropagated banana plants using methylation-sensitive amplification polymorphism (MSAP). Plant Science 161:359−67

doi: 10.1016/S0168-9452(01)00421-6
[55]

Chakrabarty D, Yu KW, Paek KY. 2003. Detection of DNA methylation changes during somatic embryogenesis of Siberian ginseng (Eleuterococcus senticosus). Plant Science 165:61−68

doi: 10.1016/S0168-9452(03)00127-4
[56]

Portis E, Acquadro A, Comino C, Lanteri S. 2004. Analysis of DNA methylation during germination of pepper (Capsicum annuum L.) seeds using methylation-sensitive amplification polymorphism (MSAP). Plant Science 166:169−78

doi: 10.1016/j.plantsci.2003.09.004
[57]

Sha A, Lin X, Huang J, Zhang D. 2005. Analysis of DNA methylation related to rice adult plant resistance to bacterial blight based on methylation-sensitive AFLP (MSAP) analysis. Molecular Genetics and Genomics 273:484−90

doi: 10.1007/s00438-005-1148-3
[58]

Wang Z, Nie L, He Y. 2009. The effect of 5-azacytidine to the DNA methylation and morphogenesis character of chrysanthemum during in vitro growth. Acta Horticulturae Sinica 36:1783−90

doi: j.issn.0513-353x.2009.12.012
[59]

Srikanth A, Schmid M. 2011. Regulation of flowering time: all roads lead to Rome. Cellular and Molecular Life Sciences 68:2013−37

doi: 10.1007/s00018-011-0673-y
[60]

Galun E. 2007. Plant Patterning: Structural and Molecular Genetic Aspects. USA: World Scientific. https://doi.org/10.1142/6326

[61]

Simpson GG, Dean C. 2002. Arabidopsis, the Rosetta stone of flowering time? Science 296:285−89

doi: 10.1126/science.296.5566.285
[62]

Putterill J, Laurie R, Macknight R. 2004. It's time to flower: the genetic control of flowering time. BioEssays 26:363−73

doi: 10.1002/bies.20021
[63]

Li Z, Zhang R, Yang X, Zhang D, Li B, et al. 2019. Analysis of gene expression and methylation datasets identified ADAMTS9, FKBP5, and PFKBF3 as biomarkers for osteoarthritis. Journal of Cellular Physiology 234:8908−17

doi: 10.1002/jcp.27557
[64]

Choudhury SR, Cui Y, Lubecka K, Stefanska B, Irudayaraj J. 2016. CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget 7:46545−56

doi: 10.18632/oncotarget.10234
[65]

Morita S, Noguchi H, Horii T, Nakabayashi K, Kimura M, et al. 2016. Targeted DNA demethylation in vivo using dcas9-peptide repeat and scFv-TET1 catalytic domain fusions. Nature Biotechnology 34:1060−65

doi: 10.1038/nbt.3658
[66]

Gallego-Bartolomé J, Gardiner J, Liu W, Papikian A, Ghoshal B, et al. 2018. Targeted DNA demethylation of the Arabidopsis genome using the human tet1 catalytic domain. PNAS 115:E2125−E2134

doi: 10.1073/pnas.1716945115
[67]

Hanzawa N, Hashimoto K, Yuan X, Kawahori K, Tsujimoto K, et al. 2020. Targeted DNA demethylation of the Fgf21 promoter by CRISPR/dCas9-mediated epigenome editing. Scientific Reports 10:5181

doi: 10.1038/s41598-020-62035-6
[68]

Morita S, Horii T, Kimura M, Hatada I. 2020. Synergistic Upregulation of Target Genes by TET1 and VP64 in the dCas9-SunTag Platform. International Journal of Molecular Sciences 21:1574

doi: 10.3390/ijms21051574
[69]

Cubas P, Vincent C, Coen E. 1999. An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401:157−61

doi: 10.1038/43657
[70]

Manning K, Tör M, Poole M, Hong Y, Thompson AJ, et al. 2006. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nature Genetics 38:948−52

doi: 10.1038/ng1841
[71]

Goettel W, Messing J. 2013. Paramutagenicity of a p1 epiallele in maize. Theoretical and Applied Genetics 126:159−77

doi: 10.1007/s00122-012-1970-z
[72]

Wu X, Wen X, Ma C. Dai S. 2018. Rapid induction of plant regeneration from leaf of Chrysanthemum lavandulifolium. Advances in Ornamental Horticulture of China 2018:453−60