[1]

Zhu JK. 2016. Abiotic stress signaling and responses in plants. Cell 167:313−24

doi: 10.1016/j.cell.2016.08.029
[2]

Burko Y, Gaillochet C, Seluzicki A, Chory J, Busch W. 2020. Local HY5 activity mediates hypocotyl growth and shoot-to-root communication. Plant Communication 1:100078

doi: 10.1016/j.xplc.2020.100078
[3]

Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K. 2017. Transcriptional regulatory network of plant heat stress response. Trends Plant Science 22:53−65

doi: 10.1016/j.tplants.2016.08.015
[4]

Lesk C, Rowhani P, Ramankutty N. 2016. Influence of extreme weathers disasters on global crop production. Nature 529:84−87

doi: 10.1038/nature16467
[5]

Du X, Li W, Sheng L, Deng Y, Wang Y, et al. 2018. Over-expression of chrysanthemum CmDREB6 enhanced tolerance of chrysanthemum to heat stress. BMC Plant Biology 18:178

doi: 10.1186/s12870-018-1400-8
[6]

Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M. 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Science 14:9643−84

doi: 10.3390/ijms14059643
[7]

Jahan MS, Shu S, Wang Y, Chen Z, He M, et al. 2019. Melatonin alleviates heat-induced damage of tomato seedlings by balancing redox homeostasis and modulating polyamine and nitric oxide biosynthesis. BMC Plant Biology 19:414

doi: 10.1186/s12870-019-1992-7
[8]

Mudge K, Janick J, Scofield S, Goldschmidt EE. 2009. A history of grafting. In Horticultural Reviews, ed. Janick J. Hoboken, New Jersey: John Wiley & Sons. pp. 437−93 https://doi.org/10.1002/9780470593776.ch9

[9]

Warschefsky EJ, Klein LL, Frank MH, Chitwood DH, Londo JP, et al. 2016. Rootstocks: diversity, domestication, and impacts on shoot phenotypes. Trends in Plant Science 21:418−37

doi: 10.1016/j.tplants.2015.11.008
[10]

Hu W, Di Q, Wang Z, Zhang Y, Zhang J, et al. 2019. Grafting alleviates potassium stress and improves growth in tobacco. BMC Plant Biology 19:130

doi: 10.1186/s12870-019-1706-1
[11]

Stegemann S, Bock R. 2009. Exchange of genetic material between cells in plant tissue grafts. Science 324:649−51

doi: 10.1126/science.1170397
[12]

Estañ MT, Martinez-Rodriguez MM, Perez-Alfocea F, Flowers TJ, Bolarin MC. 2005. Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. Journal of Experimental Botany 56:703−12

doi: 10.1093/jxb/eri027
[13]

Li H, Liu SS, Yi CY, Wang F, Zhou J, et al. 2014. Hydrogen peroxide mediates abscisic acid- induced HSP70 accumulation and heat tolerance in grafted cucumber plants. Plant, Cell & Environment 37:2768−80

doi: 10.1111/pce.12360
[14]

Xu Y, Yuan Y, Du N, Wang Y, Shu S, et al. 2018. Proteomic analysis of heat stress resistance of cucumber leaves when grafted onto Momordica rootstock. Hortic. Res 5:53

doi: 10.1038/s41438-018-0060-z
[15]

Wei Y, Wang Y, Wu X, Shu S, Sun J, et al. 2019. Redox and thylakoid membrane proteomic analysis reveals the Momordica (Momordica charantia L.) rootstock-induced photoprotection of cucumber leaves under short-term heat stress. Plant Physiology and Biochemistry 136:98−108

doi: 10.1016/j.plaphy.2019.01.010
[16]

Gautier AT, Chambaud C, Brocard L, Ollat N, Gambetta GA, et al. 2019. Merging genotypes: graft union formation and scion-rootstock interactions. Journal of Experimental Botany 70:747−55

doi: 10.1093/jxb/ery422
[17]

Sakakibara H. 2006. Cytokinins: activity, biosynthesis, and translocation. Annual Review of Plant Biology 57:431−49

doi: 10.1146/annurev.arplant.57.032905.105231
[18]

Hwang I, Sheen J, Müller B. 2012. Cytokinin signaling networks. Annual Review of Plant Biology 63:353−80

doi: 10.1146/annurev-arplant-042811-105503
[19]

Kieber JJ, Schaller GE. 2014. Cytokinins. The Arabidopsis Book 2014:e0168

doi: 10.1199/tab.0168
[20]

Poitout A, Crabos A, Petřík I, Novák O, Krouk G, et al. 2018. Responses to systemic nitrogen signaling in Arabidopsis roots involve trans-Zeatin in shoots. The Plant Cell 30:1243−57

doi: 10.1105/tpc.18.00011
[21]

Osugi A, Kojima M, Takebayashi Y, Ueda N, Kiba T, et al. 2017. Systemic transport of trans-zeatin and its precursor have differing roles in Arabidopsis shoots. Nature Plants 3:17112

doi: 10.1038/nplants.2017.112
[22]

Veerasamy M, He Y, Huang B. 2007. Leaf senescence and protein metabolism in creeping bentgrass exposed to heat stress and treated with cytokinins. Journal of the American Society for Horticultural Science 132:467−72

doi: 10.21273/JASHS.132.4.467
[23]

Černý M, Jedelský PL, Novák J, Schlosser A, Brzobohatý B. 2014. Cytokinin modulates proteomic, transcriptomic and growth responses to temperature shocks in Arabidopsis. Plant, Cell & Environment 37:1641−55

doi: 10.1111/pce.12270
[24]

Argueso CT, Ferreira FJ, Kieber JJ. 2009. Environmental perception avenues: the interaction of cytokinin and environmental response pathways. Plant, Cell & Environment 32:1147−60

doi: 10.1111/j.1365-3040.2009.01940.x
[25]

Peccoux A, Loveys B, Zhu J, Gambetta GA, Delrot S, et al. 2018. Dissecting the rootstock control of scion transpiration using model-assisted analyses in grapevine. Tree Physiology 38:1026−40

doi: 10.1093/treephys/tpx153
[26]

Ellis, John R. 1979. The most abundant protein in the world. Trends in Biochemical Sciences 4:241−44

doi: 10.1016/0968-0004(79)90212-3
[27]

Raven JA. 2009. Contributions of anoxygenic and oxygenic phototrophy and chemolithotrophy to carbon and oxygen fluxes in aquatic environments. Aquatic Microbial Ecology 56:177−92

doi: 10.3354/ame01315
[28]

Yokota A. 2017. Revisiting RuBisCO. Bioscience, Biotechnology, and Biochemistry 81:2039−49

doi: 10.1080/09168451.2017.1379350
[29]

Parry MAJ, Reynolds M, Salvucci ME, Raines C, Andralojc PJ, et al. 2011. Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. Journal of Experimental Botany 62:453−67

doi: 10.1093/jxb/erq304
[30]

Kumar A, Li C, Portis AR. 2009. Arabidopsis thaliana expressing a thermostable chimeric Rubisco activase exhibits enhanced growth and higher rates of photosynthesis at moderately high temperatures. Photosynthesis Research 100:143−53

doi: 10.1007/s11120-009-9438-y
[31]

Kurek I, Chang TK, Bertain SM, Madrigal A, Liu L, et al. 2007. Enhanced Thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress. The Plant Cell 19:3230−41

doi: 10.1105/tpc.107.054171
[32]

Portis A. 2004. Rubiscoactivase − Rubisco's catalytic chaperone. Photosynthesis Research 75:11−27

doi: 10.1023/A:1022458108678
[33]

Sato R, Ito H, Tanaka A. 2015. Chlorophyll b degradation by chlorophyll b reductase under high- light conditions. Photosynthesis Research 126:249−59

doi: 10.1007/s11120-015-0145-6
[34]

Müller B, Sheen J. 2007. Cytokinin signaling pathway. Science's STKE 2007:cm4

doi: 10.1126/stke.4072007cm4
[35]

Skalák J, Černý M, Jedelský P, Dobrá J, Ge E, et al. 2016. Stimulation of ipt overexpression as a tool to elucidate the role of cytokinins in high temperature responses of Arabidopsis thaliana. Journal of Experimental Botany 67:2861−73

doi: 10.1093/jxb/erw129
[36]

Caers M, RudelsheimP, Van Onckelen H. 1985. Effect of heat stress on photosynthetic activity and chloroplast infrastructure in correlation with endogenous cytokinin concentration in maize seedlings. Plant Cell Physiol 26:47−52

doi: 10.1093/oxfordjournals.pcp.a076894
[37]

Liu X, Huang B. 2002. Cytokinin effects on creeping bentgrass response to heat stress: II. Leaf senescence and antioxidant metabolism. Crop Science 42:466−72

doi: 10.2135/cropsci2002.4660
[38]

Macková H, Hronková M, Dobrá J, Turečková V, Novák O, et al. 2013. Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression. Journal of Experimental Botany 64:2805−15

doi: 10.1093/jxb/ert131
[39]

Tan M, Li G, Qi S, Liu X, Chen X, et al. 2018. Identification and expression analysis of the IPT and CKX gene families during axillary bud outgrowth in apple (Malus domestica Borkh.). Gene 651:106−17

doi: 10.1016/j.gene.2018.01.101
[40]

Zou X, Shao J, Wang Q, Chen P, Zhu Y, et al. 2018. Supraoptimal cytokinin content inhibits rice seminal root growth by reducing root meristem size and cell length via increased ethylene content. International Journal of Molecular Sciences 19:4051

doi: 10.3390/ijms19124051
[41]

Černý M, Dyčka F, Bobál'ová J, Brzobohatý B. 2011. Early cytokinin response proteins and phosphoproteins of Arabidopsis thaliana identified by proteome and phosphoproteome profiling. Journal of Experimental Botany 62:921−37

doi: 10.1093/jxb/erq322
[42]

Arnon DI. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta vulgaris. Plant Physiology 24:1−15

doi: 10.1104/pp.24.1.1
[43]

Covshoff S. (Eds) 2018. Photosynthesis, Methods and protocols. New York: Humana Press, Springer. pp. 95−105 https://doi.org/10.1007/978-1-4939-7786-4

[44]

Bieleski RL. 1964. The problem of halting enzyme action when extracting plant tissues. Analytical Biochemistry 9:431−42

doi: 10.1016/0003-2697(64)90204-0
[45]

Wren SAC. 2005. Peak capacity in gradient ultra performance liquid chromatography (UPLC). Journal of Pharmaceutical and Biomedical Analysis 38:337−43

doi: 10.1016/j.jpba.2004.12.028
[46]

de Villiers A, Lestremau F, Szucs R, Gélébart S, David F, et al. 2006. Evaluation of ultra performance liquid chromatography. Part I. Possibilities and limitations. Journal of Chromatography A 1127:60−69

doi: 10.1016/j.chroma.2006.05.071
[47]

Vandermolen KM, Cech NB, Paine MF, Oberlies NH. 2013. Rapid quantitation of furanocoumarins and flavonoids in grapefruit juice using ultra-performance liquid chromatography. Phytochemical Analysis 24:654−60

doi: 10.1002/pca.2449
[48]

Desmarais SM, Cava F, de Pedro MA, Huang KC. 2014. Isolation and preparation of bacterial cell walls for compositional analysis by ultra performance liquid chromatography. Journal of Visualized Experiments 15:e51183

doi: 10.3791/51183
[49]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−8

doi: 10.1006/meth.2001.1262
[50]

Hurkman WJ, Tanaka CK. 1986. Solubilization of plant membrane proteins for analysis by two-dimensional Gel electrophoresis. Plant Physiology 81:802−6

doi: 10.1104/pp.81.3.802