ARTICLE   Open Access    

Cytokinin plays a critical role in bitter gourd rootstock-induced thermotolerance of cucumber

More Information
  • Plants, as sessile in nature, are constantly confronted with diverse biotic and abiotic stresses throughout their life cycle in the changing environment. As a result, plants evolved root-shoot communications to optimize plant growth and development, and regulate responses to environmental stresses. Here, we examined the roles of root-sourced cytokinin (CTK) response to heat stress in grafted cucumber seedlings. Cucumber plants grafted onto cucumber roots and bitter gourd (Momordica charantia) roots were exposed to heat to examine their heat tolerance by assessing the levels of photosynthetic capacity, CTK contents, chlorophyll-a/b-binding protein (Lhcb2), ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and its activating enzyme (RCA) content, and the enzyme activity of Rubisco. Bitter gourd rootstock enhanced cucumber scions heat stress tolerance. This enhancement was positively correlated with a higher content of CTK in both leaf and root parts, chlorophyll contents, and Rubisco abundance and activity. In addition, the higher level of CTK and Rubisco content in bitter gourd grafted plants shoots than in cucumber self-gafted plants shoots were attributed to an increase in CTK transport from roots in grafted plants under high-temperature conditions. These results indicated that CTK transfer from bitter gourd rootstock to scion and triggered the accumulation of Rubisco in leaf, thus improving the heat resistance of bitter gourd-grafted plants.
  • Trifolium alexandrinum (Berseem) earns its moniker as the Fodder Crop Champion due to its exceptional nutrient profile, wide adaptability, and the ability to be harvested multiple times[1,2]. Typically sown in October, it yields between 100 and 150 tons of fresh biomass per hectare over five to six harvests extending through November and May. Its remarkable nitrogen-fixing capability significantly enhances soil fertility by fixing 297−400 kg of atmospheric nitrogen per hectare[1]. Trifolium incorporation into crop rotations plays a pivotal role in enriching the soil with nitrogen to prepare it for subsequent summer crops like cotton and rice, necessitating planting at least once every two years[3]. It is recognized as a premier Rabi (winter season) forage crop in the entire North West Zone, Hill Zone, and portions of the Central and Eastern Zones of India, it spans over 20 lakh hectares[4]. Efficient in vitro plant regeneration and transformation systems are imperative for successfully introducing desired foreign genes into plants. Low genetic variations pose a significant obstacle to the advancement of forage legumes, necessitating genetic transformation to introduce new genes or cultivate new varieties. Biotechnological approaches offer potent alternatives for enhancing crop genetics, including elevating nutritional content and bolstering resistance to biotic and abiotic stresses. While progress has been made in creating genetic variations in T. alexandrinum, genetic transformation remains limited in this legume fodder crop, especially for Indian varieties due to genotype-dependent low regeneration frequency, poor susceptibility to Agrobacterium, and response to selective agents[1,3,5]. Only a few reports are available on this species in vitro culture and genetic transformation[6,7] (Table 1). The proper selection of suitable explants, optimization of Agrobacterium infection and regeneration conditions can overcome the limitations in the genetic transformation of this species. Therefore, in this study, the various parameters affecting genetic transformation were optimized using transient GUS activity in cotyledon explants (Fig. 1) to establish a reliable, and efficient Agrobacterium-mediated genetic transformation of T. alexandrinum to improve its high biomass production, resilience to adverse climatic and biotic stresses, substantial nitrogen fixation and more nutritious and palatable fodder.

    Table 1.  Trifolium species with explant used, gene transferred, antibiotic for selection, the vector used, analysis method, and transformation efficiency.
    S. no. Species Explant Gene transferred Vector and Agrobacterium strain Transformation efficiency Selection Analysis Ref.
    1 Trifolium
    Alexandrinum
    Cotyledon uid A gene p7i-UG (EHA105) GUS assay [1]
    2 Trifolium
    repens
    WXP1 and GUS pCAMBIA3301
    (AGL1)
    Phosphinothricin GUS staining, Northern blot, PCR and RT-PCR [8]
    3 Trifolium occidentale Cotyledon Bar selection gene and uid A gene pHZBar-intGUS (GV3101) 7.5% Ammonium glufosinate and Timentin Southern blot and GUS assay [9]
    4 Trifolium subterranean Hypocotyl Bar, uid A, nptII, al pMCP3
    (AGL1)
    Phosphinothrycin Southern blotting, Nothern blotting, GUS assay, and α-AI immunoblot assay [10]
    5 Trifolium subterranean
    Cotyledon uid A gene and hyg gene pH35
    (AGL0)
    5.2% Hygromycin and Cefotaxime PCR [11]
    6 Trifolium
    Pratense
    Callus generated from cotyledon and hypocotyl IFS gene pRI101-AN-IFS
    (LBA4404)
    Kanamycin and cephalosporin RT-PCR [12]
     | Show Table
    DownLoad: CSV
    Figure 1.  Optimization of different parameters for Agrobacterium-mediated transformation of Trifolium alexandrinum.

    Mature seeds of T. alexandrinum variety Mescavi were obtained from the Chaudhary Charan Singh Haryana Agriculture University, Hisar, Haryana, India. Agrobacterium tumefaciens strain EHA105 harboring a binary vector pCAMBIA2301 that carries a scorable marker, uid A gene encoding for β glucuronidase (GUS), and a selectable marker, nptII gene encoding for neomycin phosphotransferase was used for transformation. Both genes are controlled by CaMV35S promoter (Fig. 2).

    Figure 2.  T-DNA region of the plant binary vector pCAMBIA2301 used for transformation. LB: Left border, GUS: uid A, nptII: neomycin phosphotransferase-II selectable marker genes and their respective promoters plus restriction enzyme sites, NOS terminator: nopaline synthase terminator, RB: Right border.

    Healthy seeds were surface sterilized by stirring them in an aqueous 0.2% mercuric chloride solution for 3 min in a laminar air-flow chamber. Afterward, the seeds were washed five to six times with autoclaved distilled water to remove all traces of mercuric chloride. The seeds were then germinated on MSB5 medium[13] containing salts of Murashige and Skoog medium and vitamins of B5 medium[14], and 3% sucrose for 3 d at 24 ± 2 °C under a 16-h photoperiod of cool-white fluorescent light with an intensity of 80 μEm−2·s−1.

    The cotyledon explants with petioles (~6 mm in length) were cut closely to the embryonic axis using a sterilized scalpel and forceps inside a laminar airflow cabinet. The cotyledons with intact petioles were cultured on MSB5 semi-solid media with varied amounts of BAP (2−4 mg/L) by slightly embedding the proximal cut end in the medium. The pH of the medium was maintained at 5.8 before autoclaving for 20 min at 121 °C and 15 psi. The cultures were kept at 24 ± 2 °C and exposed to 16 h of cool-white fluorescent light.

    Several variables affecting transformation efficiency were optimized using transient GUS activity to establish an efficient transformation protocol for T. alexandrinum. Three-day-old cotyledon explants excised from in vitro-raised seedlings were incubated in A. tumefaciens (pCAMBIA2301) solution and/or sonicated in a bath-type sonicator (at 40 kHz) for 30 s and gently rotated at 80 rpm for 10–40 min (Fig. 3). The explants were air-dried on sterile filter paper and co-cultivated on filter paper hydrated with liquid MSB5 co-culture medium containing MES buffer, 50−100 μM acetosyringone, 0−4 mg/L BAP at 5.2−5.8 pH under 22−28 °C and dark conditions for 1−4 d. Sixty explants were used for each experimental parameter and each experiment was carried out in triplicate (Fig. 4).

    Figure 3.  A. tumefaciens mediated transformation of T. alexandrinum. (a) T. alexandrinum seeds (bar = 1 mm). (b) T. alexandrinum 3-d old seedling (bar = 10 mm). (c) Cotyledons with petiole used as explant (bar = 2 mm). (d) Explants in co-cultivation medium (bar = 10 mm). (e) Sonication of explants (bar = 6 cm). (f) Transformed explant showing transient GUS activity while untransformed (control) explant showed no GUS activity after dipping in GUS-solution, (bar = 6 mm). (g) Agrobacterium treated explants on selection media (bar = 10 mm). (h) Explants regenerating on selection medium (bar = 10 mm) and arrow showed completely bleached non-transformed shoots on selection medium. (i) Explant with multiple shoots (bar = 0.5 mm). (j) Transformed regenerated shoots showing GUS activity and non-transformed regenerated shoots without GUS activity (bar = 1 cm).
    Figure 4.  Stable GUS expression in the cotyledonary explant. (a) Shoots regenerated from untransformed explant (bar = 2 mm). (b) Shoots regenerated from transformed explants showing GUS activity (bar = 2 mm).

    The cocultured explants were thoroughly washed with sterilized distilled water and a final wash with cefotaxime antibiotic to kill all bacteria attached to the surface of the explants, and dried on a sterile filter paper. The explants were either incubated in a freshly prepared X-Gluc solution at 37 °C for approximately 24 h[15] or transferred onto MSB5 medium containing 2 mg/L BAP for shoot regeneration under culture conditions as mentioned in the seed germination section. The explants were treated with 70%−90% ethanol to remove their chlorophyll and examined under a stereo-zoom microscope. The frequency of GUS activity was determined by dividing the number of cotyledon explants showing blue color with the total number of cotyledon explants incubated in X-Gluc.

    Statistical analysis was performed for each parameter and experiment using one-way ANOVA in Graph Pad Prism 9.4. Data was recorded on 60 explants per analysis and was replicated three times. The 'Honest Significant Difference' test by Tukey was utilized to determine major variations among different groups at various levels of significance, * p < 0.05, ** p < 0.01, *** p < 0.001.

    The cotyledons with petiole explants were cut from young seedlings and incubated with the co-culture medium. The number of explants that expressed GUS following Agrobacterium infection depends on the co-incubation time. In this period, Agrobacterium had the opportunity to invade meristematic cells. This study examined various (20, 30, and 40 min) co-cultivation periods.

    Naturally, wounded plant cells release a phenolic compound, acetosyringone, which stimulates Agrobacterium for attachment with wounded plant cells and induces the Vir gene. Vir gene expression controls the T-DNA transfer in the plant cell[16]. It has been demonstrated that GUS is more frequently used for the genetic transformation of many plant species. The effect of different acetosyringone concentrations (50, 75, and 100 μM) on transient GUS expression was investigated by co-cultivating cotyledonary explant for 3 d in the dark.

    The co-cultivation incubation period influenced the genetic transformation. In legume (Cicer arietinum), the co-cultivation period was carried out for 1–4 d and optimized that 2 d of co-cultivation was better for transformation[17]. A short period is not beneficial because bacteria need sufficient time to stick to and invade plant cells. In contrast, a long period causes necrosis and, as a result, reduces T-DNA transfer. In this study, explants were incubated in co-cultivation media (pH 5.5) in the dark for 2−4 d to optimize the co-cultivation period for transient genetic expression in Trifolium alexandrinum.

    In earlier studies[18,19], it was underlined how crucial it was to include phytohormone in the co-culture medium to increase transformation incidence. A thorough investigation found that phytohormone in the medium may aid the transformants to survive in intense stress brought on by wounding and exposure to Agrobacterium. The most common compound utilized in different legume species was 6-benzyl aminopurine (BAP)[20]. For maximum transformation efficiency in Trifolium alexandrinum, different concentrations of BAP (2, 3, and 4 mg/L) were used with MsB5 media.

    The Agrobacterium-mediated transformation was affected by co-cultivation temperature in Trifolium pratense[12]. Lower temperature enhanced pilus construction and increased the number of pili on the cell surface[21]. The enhanced transformation may have been partly caused by the T-DNA transfer machinery's Vir B-Vir D4 components and improved performance at low temperatures[22]. In the present study, the co-cultivation temperature was optimized between 22−24 °C to increase the transformation efficacy.

    The pH level of the co-cultivation medium plays a pivotal role in determining the virulence and transformation efficiency of Agrobacterium. The expression of Vir genes is influenced by the pH of the surrounding environment, with optimal transformation efficiency observed within the pH range of 5.0 to 6.0 in the co-cultivation medium[23]. To investigate this, three specific pH values (5.2, 5.5, and 5.8) were assessed, each with approximately 60 explants assigned to the respective treatment groups.

    For genetic transformation in Trifolium, cotyledonary explants having meristematic cells are the primary goal, and mechanical damage to the meristematic region increases the potential of foreign gene uptake. Making tiny wounds and sonication enables Agrobacterium to enter meristematic cells quickly. The transformation effectiveness gradually increased with sonication cycles lasting up to 30 s.

    MES buffer initiates the Agrobacterium-mediated genetic transformation[24]. In the present study, the impact of MES buffer, either being present or not in the transient GUS experiment was investigated.

    The explants were co-cultured in liquid MSB5 co-culture medium for 1−3 d at 22−28 °C under dark conditions, were washed with sterilized distilled water and antibiotic to clean extra bacteria attached on the surface of explants, and later patted dry on a sterile filter paper, and incubated in X-Gluc dye at 37 °C for approximately 24 h[15]. The tissue should be de-coloured in 70%−90% ethanol the day after the assay solution is removed. There were 60 explants employed for each experimental parameter, and each experiment was carried out in triplicate.

    FrequencyofGUSexpression=ThenumberofcotyledonexplantsshowingabluecolorTotalnumberofcotyledonexplantsincubatedinX-Gluc

    Where the gene has been actively expressed can be seen as remarkable blue spots by the GUS-induced stain. Thus, robust promoter activity results in significant staining, whereas weak promoter activity results in minimal staining. Optimized Agrobacterium transformation protocol led to a high frequency of transformation (up to 96%) and yielded high blue spots on explants after following selected best parameters that effect transformation. Microscopic observation of the blue spots revealed transient uid A gene incorporation into the explant; besides, no blue spots are visible in control explants (without Agrobacterium treatment) (Fig. 4). Thus, following these optimized parameters gave the highest transformation efficiency in Trifolium alexandrinum.

    Agrobacterium-mediated genetic transformation has been the most common method for Trifolium species transformation[911,25]. A. tumefaciens and A. rhizogenes have been used for genetic transformation[5,26]. However, an efficient Agrobacterium-mediated genetic transformation for an Indian cultivar of T. alexandrinum has very few reports. The barriers to efficient gene transfer in this legume can be overcome with methodological adjustments, particularly in co-cultivation conditions and explant selection. The significant improvement in the efficiency of Agrobacterium-mediated transformation of T. alexandrinum presents a promising avenue for genetic improvement of this species.

    Three-day-old cotyledon explants with petiole incubated in Agrobacterium suspension for 10, 20, 30, and 40 min showed significant differences in transient GUS expression. Explants incubated for 20 min in Agrobacterium suspension exhibited a maximum frequency of GUS expression, i.e. 91.11%, and those with higher incubation time, i. e., 30- and 40-min reduced percent explants with GUS expression. Therefore, the incubation period of 20 min was optimal in cotyledonary explants of T. alexandrinum (Fig. 5a), and a similar effect was observed in Trifolium repens[27], Vigna mungo L. Hepper[28]. Further increase in incubation time, decreased the transformation frequency with excessive bacteria growth that were difficult to eliminate. In some other plant species and legumes, explants were incubated for 20−40 min[16,27,29].

    Figure 5.  Optimization of Agrobacterium-mediated genetic transformation of Egyptian clover (Trifolium alexandrinum). (a) Effect of Agrobacterium inoculation time in minutes. (b) Effect of different acetosyringone concentrations (μM). (c) Effect of co-cultivation duration. (d) Effect of BAP concentrations in cocultivation medium. (e) Effect of temperature during co-cultivation. (f) Effect of co-cultivation medium pH. (g) Effect of explant condition (intact and sonicated). (h) Effect of presence of MES buffer in cocultivation medium. Significant differences were obtained at * p < 0.05, ** p < 0.01, *** p < 0.001 levels.

    The addition of a phenolic compound, acetosyringone (50, 75, and 100 μM) in the cocultivation medium significantly increased the transformation efficacy with an increase in its concentration. The maximum GUS expression frequency (90%) was observed at 100 μM of acetosyringone (Fig. 5b). The presence of acetosyringone in the bacterial suspension and co-cultivation medium is essential for the T. alexandrinum notable transformation. Researchers also successfully used acetosyringone at a concentration of 100 μM to increase transformation efficiency like in Cicer arietinum, Citrullus lematus Pisum sativum, and Vigna unguiculata L. Walp[16,2931] whereas in T. subterranean and Sesamum indicum 20 μM acetosyringone was used for genetic transformation[10,32].

    The Agrobacterium-inoculated explants were co-cultured for 1−4 d in the dark. The co-cultivation duration had a significant effect on GUS expression frequency. The 3-d co-cultivation period was the most effective, with a high transformation frequency (89.4%) for T. alexandrinum (Fig. 5c) as the same co-cultivation period was used in Vigna unguiculata L. Walp, Vigna radiata[31,33]. Co-cultivation for short periods of 1 and 2 d was not sufficient to improve GUS gene expression and extending the cocultivation beyond 4 d caused necrosis due to the excessive growth of Agrobacterium resulting in a decline of transformation frequency and explants regeneration. Most Trifolium species like T. subterranean[10], T. pratense[12], and other legumes[34,35] required a 2−7-d co-cultivation period for the maximum transformation frequency.

    As reported earlier, BAP was the most effective cytokinin for shoot regeneration in Trifolium species[1,3]. In this study, explants incubated with different BAP concentrations, 2, 3 and 4 mg/L showed significant differences in transient GUS expression. BAP might have helped the explants to survive under bacterial stress conditions. Maximum transformation efficacy (81.66%) was observed in those explants incubated on a co-cultivation medium with 2 mg/L BAP (Fig. 5d). TDZ, kinetin, and zeatin were also used in different concentrations in some other plant species[10,12,36].

    Co-cultivation at 25 °C gave the maximum transitory GUS expression in Trifolium subterraneum[10] and at 26 °C produced the best transformation in both Trifolium species, T. repens, T. pratense, and Medicago[37]. Among the three temperatures (22, 24, and 28 °C) evaluated in the current study, T. alexandrinum cotyledonary explants transformation had the maximum effectiveness, i.e., 80.55% GUS expression at 24 °C, (Fig. 5e) indicating that a suitable low temperature during co-cultivation can enhance Agrobacterium-mediated transformation.

    In the present study, the effect of the co-cultivation medium at different pH (5.2, 5.5, and 5.8) was tested on transient GUS activity. The maximum GUS transformation frequency of 80.55% was at pH 5.5 (Fig. 5f) while the minimum frequency of 51.6% was at pH 5.2. Co-cultivation medium pH is the essential factor responsible for the activation of vir gene expression. So, the pH should be adjusted appropriately when preparing a co-cultivation medium. pH 5.3 and 5.4, were also used in genetic transformation studies in Trifolium alexandrinum and Cowpea[7,31].

    Sonication of the cotyledonary explants at 40 kHz for 30 s significantly improved the transformation efficiencies to 91.1% which was 1.5-fold of the non-sonicated (intact) explants (Fig. 5g). However, sonication treatment longer than 30 s reduced the transformation efficiency. Sonication treatments considerably boosted the efficacy of genetic transformation in several plant species[38]. More phenolic compounds may be released from the micro-wounds made by sonication, enabling Agrobacterium to enter the tissue deeper and increase the effectiveness of plant transformation[39,40].

    The pH of the Agrobacterium inoculation and co-cultivation medium affected the transformation efficacy of T. alexandrinum in the present study. The use of MES buffer in the co-cultivation medium maintained or retained the pH and without MES buffer use, the pH was changed to the lower side[41]. MES buffer improves the attachment of Agrobacterium to the plant leading to better T-DNA transfer and integration[16]. The MES buffer presence in the cocultivation medium improved the transformation efficiency by 82.7% (Fig. 5h) than without an MES buffer, it was only 52.2%. In the genetic transformation of several legumes, an MES buffer is also added to the cocultivation medium.

    Cocultured 3-day-old cotyledonary explants with petiole (Fig. 6a, b) on transfer onto shoot regeneration medium (MS medium having 2 mg/L BAP) containing 80 mg/L kanamycin and 250 mg/L cefotaxime regenerated healthy shoots (Fig. 6c, d). The regenerated shoots were elongated on MS medium containing 0.15 mg/L BAP, 80 mg/L kanamycin, and 250 mg/L cefotaxime (Fig. 6e). The elongated shoots were transferred to MS medium containing 1.5 mg/L IBA, 200 mg/L cefotaxime, and 30 mg/L kanamycin for rooting (Fig. 6f, g). Rooted shoots were grown in pots containing sterilized soil for acclimatization and flowering (Fig. 6h).

    Figure 6.  Development of Trifolium alexandrinum plants. (a) Three-day-old seedling, (bar = 10 mm), (b) excised cotyledonary explant with petiole (bar = 2 mm), (c), (d) young multiple shoots emerging from the petiolar region of cotyledon explants (bar = 0.3 cm, bar = 0.7 cm), (e) multiple shoots arising from cotyledon explant (bar = 0.8 cm), (f) elongated shoots on elongation medium (bar = 2 cm), (g) rooted shoot on rooting medium (bar = 2 cm), (h) mature plant with white flowers (bar = 9 cm).

    Optimizing factors that enhance Agrobacterium virulence for T-DNA transport and improves the ability to survive and regenerate transformed cells is crucial for legume crops like Berseem. In the current study, standardized parameters have been established for an efficient Agrobacterium-mediated transformation strategy, focusing on T. alexandrinum cotyledonary explants. Through experimentation with various variables, including bacterial inoculation time, co-cultivation duration, acetosyringone concentration, sonication-induced injuries, co-cultivation medium pH, presence of MES buffer, BAP concentrations, and co-cultivation temperature, we observed increased transformation frequencies. After thorough optimization, it was determined that cotyledonary explants with petioles, subjected to injury and inoculated in a co-cultivation medium with a pH of 5.5 for 20 min, supplemented with acetosyringone (100 μM), BAP (2 mg/L), MES buffer, and incubated for 3 d at 24 ± 2 °C, exhibited enhanced transformation efficiency. The inclusion of MES buffer maintained a constant pH in the co-cultivation medium. This optimized procedure holds promise for efficient genetic modification of Trifolium alexandrinum and other leguminous plants.

    Despite advancements, challenges persist in achieving optimal transformation efficiency in T. alexandrinum. This paper explores potential future directions and strategies to overcome these challenges, ultimately advancing the genetic improvement of this valuable forage crop.

    Investigating the molecular mechanisms underlying the interaction between T. alexandrinum and Agrobacterium tumefaciens is crucial. A comprehensive understanding of factors influencing transformation efficiency, such as host cell receptivity, bacterial virulence, and genetic compatibility, will inform targeted optimization strategies.

    Development of improved binary vectors tailored specifically for T. alexandrinum transformation can enhance efficiency. This involves optimizing promoter and terminator sequences, incorporation of tissue-specific regulatory elements, and exploring alternative selectable marker genes to minimize pleiotropic effects and increase transformation frequency.

    Screening and characterization of diverse Agrobacterium strains for their suitability in T. alexandrinum transformation could lead to the identification of strains with enhanced virulence and transformation efficiency. Additionally, engineering Agrobacterium strains to improve their capacity for DNA delivery and integration into the plant genome could be a promising avenue.

    Fine-tuning tissue culture conditions, including explant type, hormone concentrations, and co-cultivation parameters, can significantly impact transformation efficiency. Optimization of these parameters based on the specific requirements of T. alexandrinum will contribute to consistent and reproducible transformation outcomes.

    Integration of CRISPR-Cas genome editing technology with Agrobacterium-mediated transformation can facilitate precise genetic modifications in T. alexandrinum. Harnessing CRISPR for targeted gene knockouts, gene editing, and regulatory element manipulation offers unprecedented opportunities for trait improvement with high specificity and efficiency.

    Leveraging transcriptomics, proteomics, and metabolomics approaches can provide insights into the molecular responses of T. alexandrinum to transformation and identify key regulatory nodes. Integrating omics data with transformation experiments enables a holistic understanding of the genetic and biochemical pathways involved, guiding rational design strategies for enhanced transformation efficiency.

    Investigating the role of epigenetic modifications in modulating gene expression during T. alexandrinum transformation could uncover epigenetic targets for manipulation to improve transformation efficiency and stability of transgene expression.

    As genetic modification technologies advance, addressing biosafety and regulatory considerations are paramount. Proactive engagement with regulatory bodies and stakeholders, along with thorough risk assessment of transformed T. alexandrinum lines ensures responsible deployment and acceptance of genetically modified crops.

    In conclusion, advancing the efficiency of Agrobacterium-mediated transformation in T. alexandrinum requires a multidisciplinary approach integrating molecular biology, microbiology, bioinformatics, and plant physiology. By addressing key challenges and implementing innovative strategies, researchers can unlock the full potential of genetic transformation for improving this vital forage crop.

    The authors confirm contribution to the paper as follows: performing experiment and writing manuscript: Prajapati M, Chaudhary D; assisting in experiment and manuscript: Ahlawat YK, Jaiwal PK, Jaiwal R; project supervision: Chaudhary D, Jaiwal PK; study conception: Ahlawat YK, Chaudhary D. All authors reviewed the results and approved the final version of the manuscript.

    All data generated or analyzed during this study are included in this published article.

    Mukta Prajapati and Darshna Chaudhary are grateful to the ClR-SRF and Department of Biotechnology, New Delhi for the financial support (09/382(0235)/2019-EMR-1 and BT/INF/22/SP43043/2021) respectively.

  • The authors declare that they have no conflict of interest.

  • Supplemental Fig. S1 Effects of Momordca rootstock on root and shoot morphology of grafted cucumber plants under high temperature stress (a) shoot part (b) root part. Plants were exposed to heat stress at 42 °C for 48 h. Cs-28: self-grafted plants subjected to 28/18 °C (day/night). Mc-28: Bitter gourd-grafted plants subjected to 28/18 °C (day/night). Cs-42: self-grafted plants subjected to 42/32 °C (day/night). Mc-42: Bitter gourd-grafted plants subjected to 42/32 °C (day/night).
    Supplemental Fig. S2 Effects of exogenous trans-zeatin (tZ) on RbcL gene expression level and Rubisco activity of grafted plants under heat stress. (a) Changes in the gene relative expression level of RbcL Plants were pretreated with 10 μM tZ for 12 h and then plants were exposed to heat stress at 42 °C for 48 h. (b) Changes in the Rubisco activity. Plants were pretreated with 10 μM tZ for 12 h and then plants were exposed to heat stress at 42 °C for 48 h.
    Supplemental Table S1 Primers used to quantify the expression levels of genes using in real-time PCR analysis.
  • [1]

    Zhu JK. 2016. Abiotic stress signaling and responses in plants. Cell 167:313−24

    doi: 10.1016/j.cell.2016.08.029

    CrossRef   Google Scholar

    [2]

    Burko Y, Gaillochet C, Seluzicki A, Chory J, Busch W. 2020. Local HY5 activity mediates hypocotyl growth and shoot-to-root communication. Plant Communication 1:100078

    doi: 10.1016/j.xplc.2020.100078

    CrossRef   Google Scholar

    [3]

    Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K. 2017. Transcriptional regulatory network of plant heat stress response. Trends Plant Science 22:53−65

    doi: 10.1016/j.tplants.2016.08.015

    CrossRef   Google Scholar

    [4]

    Lesk C, Rowhani P, Ramankutty N. 2016. Influence of extreme weathers disasters on global crop production. Nature 529:84−87

    doi: 10.1038/nature16467

    CrossRef   Google Scholar

    [5]

    Du X, Li W, Sheng L, Deng Y, Wang Y, et al. 2018. Over-expression of chrysanthemum CmDREB6 enhanced tolerance of chrysanthemum to heat stress. BMC Plant Biology 18:178

    doi: 10.1186/s12870-018-1400-8

    CrossRef   Google Scholar

    [6]

    Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M. 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Science 14:9643−84

    doi: 10.3390/ijms14059643

    CrossRef   Google Scholar

    [7]

    Jahan MS, Shu S, Wang Y, Chen Z, He M, et al. 2019. Melatonin alleviates heat-induced damage of tomato seedlings by balancing redox homeostasis and modulating polyamine and nitric oxide biosynthesis. BMC Plant Biology 19:414

    doi: 10.1186/s12870-019-1992-7

    CrossRef   Google Scholar

    [8]

    Mudge K, Janick J, Scofield S, Goldschmidt EE. 2009. A history of grafting. In Horticultural Reviews, ed. Janick J. Hoboken, New Jersey: John Wiley & Sons. pp. 437−93 https://doi.org/10.1002/9780470593776.ch9

    [9]

    Warschefsky EJ, Klein LL, Frank MH, Chitwood DH, Londo JP, et al. 2016. Rootstocks: diversity, domestication, and impacts on shoot phenotypes. Trends in Plant Science 21:418−37

    doi: 10.1016/j.tplants.2015.11.008

    CrossRef   Google Scholar

    [10]

    Hu W, Di Q, Wang Z, Zhang Y, Zhang J, et al. 2019. Grafting alleviates potassium stress and improves growth in tobacco. BMC Plant Biology 19:130

    doi: 10.1186/s12870-019-1706-1

    CrossRef   Google Scholar

    [11]

    Stegemann S, Bock R. 2009. Exchange of genetic material between cells in plant tissue grafts. Science 324:649−51

    doi: 10.1126/science.1170397

    CrossRef   Google Scholar

    [12]

    Estañ MT, Martinez-Rodriguez MM, Perez-Alfocea F, Flowers TJ, Bolarin MC. 2005. Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. Journal of Experimental Botany 56:703−12

    doi: 10.1093/jxb/eri027

    CrossRef   Google Scholar

    [13]

    Li H, Liu SS, Yi CY, Wang F, Zhou J, et al. 2014. Hydrogen peroxide mediates abscisic acid- induced HSP70 accumulation and heat tolerance in grafted cucumber plants. Plant, Cell & Environment 37:2768−80

    doi: 10.1111/pce.12360

    CrossRef   Google Scholar

    [14]

    Xu Y, Yuan Y, Du N, Wang Y, Shu S, et al. 2018. Proteomic analysis of heat stress resistance of cucumber leaves when grafted onto Momordica rootstock. Hortic. Res 5:53

    doi: 10.1038/s41438-018-0060-z

    CrossRef   Google Scholar

    [15]

    Wei Y, Wang Y, Wu X, Shu S, Sun J, et al. 2019. Redox and thylakoid membrane proteomic analysis reveals the Momordica (Momordica charantia L.) rootstock-induced photoprotection of cucumber leaves under short-term heat stress. Plant Physiology and Biochemistry 136:98−108

    doi: 10.1016/j.plaphy.2019.01.010

    CrossRef   Google Scholar

    [16]

    Gautier AT, Chambaud C, Brocard L, Ollat N, Gambetta GA, et al. 2019. Merging genotypes: graft union formation and scion-rootstock interactions. Journal of Experimental Botany 70:747−55

    doi: 10.1093/jxb/ery422

    CrossRef   Google Scholar

    [17]

    Sakakibara H. 2006. Cytokinins: activity, biosynthesis, and translocation. Annual Review of Plant Biology 57:431−49

    doi: 10.1146/annurev.arplant.57.032905.105231

    CrossRef   Google Scholar

    [18]

    Hwang I, Sheen J, Müller B. 2012. Cytokinin signaling networks. Annual Review of Plant Biology 63:353−80

    doi: 10.1146/annurev-arplant-042811-105503

    CrossRef   Google Scholar

    [19]

    Kieber JJ, Schaller GE. 2014. Cytokinins. The Arabidopsis Book 2014:e0168

    doi: 10.1199/tab.0168

    CrossRef   Google Scholar

    [20]

    Poitout A, Crabos A, Petřík I, Novák O, Krouk G, et al. 2018. Responses to systemic nitrogen signaling in Arabidopsis roots involve trans-Zeatin in shoots. The Plant Cell 30:1243−57

    doi: 10.1105/tpc.18.00011

    CrossRef   Google Scholar

    [21]

    Osugi A, Kojima M, Takebayashi Y, Ueda N, Kiba T, et al. 2017. Systemic transport of trans-zeatin and its precursor have differing roles in Arabidopsis shoots. Nature Plants 3:17112

    doi: 10.1038/nplants.2017.112

    CrossRef   Google Scholar

    [22]

    Veerasamy M, He Y, Huang B. 2007. Leaf senescence and protein metabolism in creeping bentgrass exposed to heat stress and treated with cytokinins. Journal of the American Society for Horticultural Science 132:467−72

    doi: 10.21273/JASHS.132.4.467

    CrossRef   Google Scholar

    [23]

    Černý M, Jedelský PL, Novák J, Schlosser A, Brzobohatý B. 2014. Cytokinin modulates proteomic, transcriptomic and growth responses to temperature shocks in Arabidopsis. Plant, Cell & Environment 37:1641−55

    doi: 10.1111/pce.12270

    CrossRef   Google Scholar

    [24]

    Argueso CT, Ferreira FJ, Kieber JJ. 2009. Environmental perception avenues: the interaction of cytokinin and environmental response pathways. Plant, Cell & Environment 32:1147−60

    doi: 10.1111/j.1365-3040.2009.01940.x

    CrossRef   Google Scholar

    [25]

    Peccoux A, Loveys B, Zhu J, Gambetta GA, Delrot S, et al. 2018. Dissecting the rootstock control of scion transpiration using model-assisted analyses in grapevine. Tree Physiology 38:1026−40

    doi: 10.1093/treephys/tpx153

    CrossRef   Google Scholar

    [26]

    Ellis, John R. 1979. The most abundant protein in the world. Trends in Biochemical Sciences 4:241−44

    doi: 10.1016/0968-0004(79)90212-3

    CrossRef   Google Scholar

    [27]

    Raven JA. 2009. Contributions of anoxygenic and oxygenic phototrophy and chemolithotrophy to carbon and oxygen fluxes in aquatic environments. Aquatic Microbial Ecology 56:177−92

    doi: 10.3354/ame01315

    CrossRef   Google Scholar

    [28]

    Yokota A. 2017. Revisiting RuBisCO. Bioscience, Biotechnology, and Biochemistry 81:2039−49

    doi: 10.1080/09168451.2017.1379350

    CrossRef   Google Scholar

    [29]

    Parry MAJ, Reynolds M, Salvucci ME, Raines C, Andralojc PJ, et al. 2011. Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. Journal of Experimental Botany 62:453−67

    doi: 10.1093/jxb/erq304

    CrossRef   Google Scholar

    [30]

    Kumar A, Li C, Portis AR. 2009. Arabidopsis thaliana expressing a thermostable chimeric Rubisco activase exhibits enhanced growth and higher rates of photosynthesis at moderately high temperatures. Photosynthesis Research 100:143−53

    doi: 10.1007/s11120-009-9438-y

    CrossRef   Google Scholar

    [31]

    Kurek I, Chang TK, Bertain SM, Madrigal A, Liu L, et al. 2007. Enhanced Thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress. The Plant Cell 19:3230−41

    doi: 10.1105/tpc.107.054171

    CrossRef   Google Scholar

    [32]

    Portis A. 2004. Rubiscoactivase − Rubisco's catalytic chaperone. Photosynthesis Research 75:11−27

    doi: 10.1023/A:1022458108678

    CrossRef   Google Scholar

    [33]

    Sato R, Ito H, Tanaka A. 2015. Chlorophyll b degradation by chlorophyll b reductase under high- light conditions. Photosynthesis Research 126:249−59

    doi: 10.1007/s11120-015-0145-6

    CrossRef   Google Scholar

    [34]

    Müller B, Sheen J. 2007. Cytokinin signaling pathway. Science's STKE 2007:cm4

    doi: 10.1126/stke.4072007cm4

    CrossRef   Google Scholar

    [35]

    Skalák J, Černý M, Jedelský P, Dobrá J, Ge E, et al. 2016. Stimulation of ipt overexpression as a tool to elucidate the role of cytokinins in high temperature responses of Arabidopsis thaliana. Journal of Experimental Botany 67:2861−73

    doi: 10.1093/jxb/erw129

    CrossRef   Google Scholar

    [36]

    Caers M, RudelsheimP, Van Onckelen H. 1985. Effect of heat stress on photosynthetic activity and chloroplast infrastructure in correlation with endogenous cytokinin concentration in maize seedlings. Plant Cell Physiol 26:47−52

    doi: 10.1093/oxfordjournals.pcp.a076894

    CrossRef   Google Scholar

    [37]

    Liu X, Huang B. 2002. Cytokinin effects on creeping bentgrass response to heat stress: II. Leaf senescence and antioxidant metabolism. Crop Science 42:466−72

    doi: 10.2135/cropsci2002.4660

    CrossRef   Google Scholar

    [38]

    Macková H, Hronková M, Dobrá J, Turečková V, Novák O, et al. 2013. Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression. Journal of Experimental Botany 64:2805−15

    doi: 10.1093/jxb/ert131

    CrossRef   Google Scholar

    [39]

    Tan M, Li G, Qi S, Liu X, Chen X, et al. 2018. Identification and expression analysis of the IPT and CKX gene families during axillary bud outgrowth in apple (Malus domestica Borkh.). Gene 651:106−17

    doi: 10.1016/j.gene.2018.01.101

    CrossRef   Google Scholar

    [40]

    Zou X, Shao J, Wang Q, Chen P, Zhu Y, et al. 2018. Supraoptimal cytokinin content inhibits rice seminal root growth by reducing root meristem size and cell length via increased ethylene content. International Journal of Molecular Sciences 19:4051

    doi: 10.3390/ijms19124051

    CrossRef   Google Scholar

    [41]

    Černý M, Dyčka F, Bobál'ová J, Brzobohatý B. 2011. Early cytokinin response proteins and phosphoproteins of Arabidopsis thaliana identified by proteome and phosphoproteome profiling. Journal of Experimental Botany 62:921−37

    doi: 10.1093/jxb/erq322

    CrossRef   Google Scholar

    [42]

    Arnon DI. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta vulgaris. Plant Physiology 24:1−15

    doi: 10.1104/pp.24.1.1

    CrossRef   Google Scholar

    [43]

    Covshoff S. (Eds) 2018. Photosynthesis, Methods and protocols. New York: Humana Press, Springer. pp. 95−105 https://doi.org/10.1007/978-1-4939-7786-4

    [44]

    Bieleski RL. 1964. The problem of halting enzyme action when extracting plant tissues. Analytical Biochemistry 9:431−42

    doi: 10.1016/0003-2697(64)90204-0

    CrossRef   Google Scholar

    [45]

    Wren SAC. 2005. Peak capacity in gradient ultra performance liquid chromatography (UPLC). Journal of Pharmaceutical and Biomedical Analysis 38:337−43

    doi: 10.1016/j.jpba.2004.12.028

    CrossRef   Google Scholar

    [46]

    de Villiers A, Lestremau F, Szucs R, Gélébart S, David F, et al. 2006. Evaluation of ultra performance liquid chromatography. Part I. Possibilities and limitations. Journal of Chromatography A 1127:60−69

    doi: 10.1016/j.chroma.2006.05.071

    CrossRef   Google Scholar

    [47]

    Vandermolen KM, Cech NB, Paine MF, Oberlies NH. 2013. Rapid quantitation of furanocoumarins and flavonoids in grapefruit juice using ultra-performance liquid chromatography. Phytochemical Analysis 24:654−60

    doi: 10.1002/pca.2449

    CrossRef   Google Scholar

    [48]

    Desmarais SM, Cava F, de Pedro MA, Huang KC. 2014. Isolation and preparation of bacterial cell walls for compositional analysis by ultra performance liquid chromatography. Journal of Visualized Experiments 15:e51183

    doi: 10.3791/51183

    CrossRef   Google Scholar

    [49]

    Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−8

    doi: 10.1006/meth.2001.1262

    CrossRef   Google Scholar

    [50]

    Hurkman WJ, Tanaka CK. 1986. Solubilization of plant membrane proteins for analysis by two-dimensional Gel electrophoresis. Plant Physiology 81:802−6

    doi: 10.1104/pp.81.3.802

    CrossRef   Google Scholar

  • Cite this article

    Han S, Shu S, Wang Y, Jahan MS, Sun J, et al. 2022. Cytokinin plays a critical role in bitter gourd rootstock-induced thermotolerance of cucumber. Vegetable Research 2:4 doi: 10.48130/VR-2022-0004
    Han S, Shu S, Wang Y, Jahan MS, Sun J, et al. 2022. Cytokinin plays a critical role in bitter gourd rootstock-induced thermotolerance of cucumber. Vegetable Research 2:4 doi: 10.48130/VR-2022-0004

Figures(6)  /  Tables(1)

Article Metrics

Article views(5815) PDF downloads(851)

ARTICLE   Open Access    

Cytokinin plays a critical role in bitter gourd rootstock-induced thermotolerance of cucumber

Vegetable Research  2 Article number: 4  (2022)  |  Cite this article

Abstract: Plants, as sessile in nature, are constantly confronted with diverse biotic and abiotic stresses throughout their life cycle in the changing environment. As a result, plants evolved root-shoot communications to optimize plant growth and development, and regulate responses to environmental stresses. Here, we examined the roles of root-sourced cytokinin (CTK) response to heat stress in grafted cucumber seedlings. Cucumber plants grafted onto cucumber roots and bitter gourd (Momordica charantia) roots were exposed to heat to examine their heat tolerance by assessing the levels of photosynthetic capacity, CTK contents, chlorophyll-a/b-binding protein (Lhcb2), ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and its activating enzyme (RCA) content, and the enzyme activity of Rubisco. Bitter gourd rootstock enhanced cucumber scions heat stress tolerance. This enhancement was positively correlated with a higher content of CTK in both leaf and root parts, chlorophyll contents, and Rubisco abundance and activity. In addition, the higher level of CTK and Rubisco content in bitter gourd grafted plants shoots than in cucumber self-gafted plants shoots were attributed to an increase in CTK transport from roots in grafted plants under high-temperature conditions. These results indicated that CTK transfer from bitter gourd rootstock to scion and triggered the accumulation of Rubisco in leaf, thus improving the heat resistance of bitter gourd-grafted plants.

    • Being immobile, plants cope with various abiotic stresses throughout their life cycle in constantly changing environments, such as drought, salinity, and extreme temperatures[1, 2]. Among them, high temperature is becoming an increasingly devastating threat for crop growth and yield[3]. Extreme heat events have caused huge damage to crop production[4]. Generally, heat stress impairs photosynthetic activity, causing damage to the cell membrane, and even affecting enzymatic activities[57]. Rubisco and its activase (RCA) are very sensitive to heat stress, which severely impairs the efficiency of the photosynthetic carbon cycle. Thus, it is necessary to find ways and mechanisms to improve crop heat tolerance.

      Grafting is an ancient horticultural technique that has been around for thousands of years[8]. It is widely used in plant cultivation programs to modify scions architecture, improve the vigor of the scions, and increase stress tolerance. What's more, grafting has become popular in recent years due to the fact that rootstocks can provide resistance to soil-borne diseases and abiotic stressors, especially in cucurbits and Solanaceous crops[9]. Grafting can improve the growth and resistance of potassium in tobacco, by improving K+ uptake, utilization, and loading capacity[10]. Previous study suggested that grafted plants can exchange of genetic information via either large DNA pieces or entire plastid genomes[11]. Grafting increases the salt tolerance of tomato by limiting the transport of sodium and chloride from the root to the shoot[12]. Cucumber grafted onto luffa and bitter gourd rootstock can improve heat stress tolerance[8, 1315]. Compared with self-grafted plants, bitter gourd-grafted plants have stronger heat resistance. This is associated with the relatively high photosynthetic capacity of bitter gourd-grafted plants under heat stress[14,15]. While little is known about the molecular mechanisms in grafted plants and whether long-distance signaling from root to shoot involved it[16].

      Cytokinins (CTKs) are a group of adenine derivatives with isoprenoid or aromatic chains connected to the N6 position of the adenine ring, which are important for regulating series of development processes and environmental responses[1719]. In plants, isoprenoid CTKs, including N6-(Δ2-isopentenyl) adenine (iP), trans-zeatin (tZ), and cis-zeatin (cZ), are more abundant than aromatic CTKs[20]. CTKs play crucial roles in the response of the root to long-distance signals. CTKs are synthesized in roots, especially at high nitrate concentration, and translocated to the shoots, regulating the growth of shoots[21]. Exogenous application of CTK improved the plants to heat stress[22, 23]. Overexpression of the CTK biosynthetic gene isopentenyltransferase (IPT) enhanced the resistance to heat stress by elevating the endogenous CTK levels. Besides, the availability of macronutrients, such as nitrate (N) and phosphate (P), regulate the expression of IPT genes[24].

      Cucumber (Cucumis sativus L.) belongs to the Cucurbitaceae family. It is a thermophilic species, and sensitive to extreme temperatures. Bitter gourd (Momordicacharantia L.), is a heat-resistant plant, widely distributed in tropical and subtropical regions of the world. As most of the members of Cucurbitaceae are highly compatible, grafting is widely used to improve stress resistance in production. Our previous research reported that grafting onto bitter gourd rootstock could improve the heat tolerance of cucumber through alleviating the decrease of photosynthetic-related protein expression under high temperature stress[14]. However, the mechanism underlying the tolerance to bitter gourd rootstock-induced systemic heat tolerance in cucumber shoots is largely unknown. In the current study, we found that bitter gourd rootstock enhanced the heat resistance of cucumber scions, is associated with protein accumulation related to photosynthesis, and the root-sourced CTK signaling involved in the bitter gourd rootstock-induced heat resistance. Our study suggested that cytokinin signaling is involved in the regulation of rootstocks on scion heat tolerance, which further lays a theoretical foundation for grafting to improve plant heat tolerance.

    • Fresh and dry weight, and growth of plants were significantly inhibited after heat treatment (42/32 °C) for 5 days (Table 1, Supplemental Fig. S1). The leaves of the self-grafted cucumber turned yellow and severely lost water after heat treatment (42/32 °C) for 5 days. The fresh and dry weight of the self-grafted plants decreased by 31.2 and 34.6%, but the plants grafted onto the bitter gourd rootstock under heat stress decreased by 18.2% and 18.4% (Table 1). In order to investigate the role of bitter gourd rootstock response to heat stress, we examined the physiological parameters changed after stressed, such as the net photosynthetic rate (Pn), chlorophyll content, and the maximum photochemical efficiency of PSII (Fv/Fm) of grafted plants after exposure to 42/32 °C for 2 days. There was no significant difference in weight, Pn, chlorophyll content, and Fv/Fm between self-grafted plants and bitter gourd-grafted plants under control temperature (Fig. 1). Heat stress decreased Pn, chlorophyll content, and Fv/Fm of self-grafted plants by 28.1%, 21.1% and 29.2%, after exposure to 42/32 °C, respectively (Fig. 1). However, the Pn, chlorophyll content and Fv/Fm value of plants grafted onto the bitter gourd rootstock only decreased by 6.8%, 18.6% and 12.2,% for the same treatments (Fig. 1), indicating that the bitter gourd rootstock had higher thermotolerance than the cucumber rootstock.

      Table 1.  Effects of high temperature on the growth of grafted cucumber seedlings.

      TreatmentsFresh weight (g·plant−1)Dry weight (g·plant−1)
      Cs-289.28 ± 0.11a1.04 ± 0.07a
      Mc-288.99 ± 0.10a0.98 ± 0.05a
      Cs-426.38 ± 0.20c0.68 ± 0.02c
      Mc-427.35 ± 0.17b0.80 ± 0.04b
      Cs-28: self-grafted plants subjected to 28/18 °C (day/night). Mc-28: bitter gourd-grafted plants subjected to 28/18 °C (day/night). Cs-42: self-grafted plants subjected to 42/32 °C (day/night). Mc-42: bitter gourd-grafted plants subjected to 42/32 °C (day/night). Data are means ± SE. The letters 'a', 'b', 'c', and 'd' indicate significant differences between treatments (p < 0.05).

      Figure 1. 

      Effects of heat stress on grafted cucumber plants on (a) net photosynthetic rate, (b) chlorophyll content, (c) images of the maximum photochemical efficiency of PSII, (d) the quantity of the maximum photochemical efficiency of PSII (Fv/Fm). The data of Pn was measured at 48 h after heat treatment, and the data of chlorophyll content and Fv/Fm were measured at 48 h and 24 h after heat treatment, respectively. All data are presented as means of three biological replicates (± SE). Means with different letters indicate significant differences at p < 0.05 according to Duncan's multiple range test. Three independent experiments were performed with similar results.

    • The results of the RT-PCR analysis showed that the expression of the RbcL and Lhcb2 genes reduced under heat stress in both of the grafted cucumber plants, but the bitter gourd rootstock efficiently alleviated the decreasing amplitude at high temperature (Fig. 2a, b). While the relative gene expression of RCA was up-regulated after exposure to high temperature, but compared to self-grafted plants, the bitter gourd rootstock suppressed its expression caused by high temperature (Fig. 2c). As shown in Fig. 2d, heat stress also decreased the level of RbcL and Lhcb2 protein in cucumber self-grafted plants. In addition, the RCA abundance was up-regulated by high temperature, especially in cucumber self-grafted plants.

      Figure 2. 

      Effects of bitter gourd rootstock on the expression of RbcL, Lhcb2 and RCA genes and their protein abundance in leaves of cucumber under heat stress. (a) The expression level of RbcL genes. (b) The expression level of Lhcb2 genes. (c) The expression level of RCA genes. (d) The expression level of RbcL, Lhcb2 and RCA proteins. Each bar represents a mean ± SE of three independent experiments. Means followed by different letters indicate significant differences between treatments (p < 0.05) according to Duncan's multiple range tests.

    • CTKs play a key role as long-distance root-to-shoot signals to regulate various growth and developmental processes in shoots[1719]. Changes in CTK contents in both leaves and roots in response to heat stress were measured (Fig. 3). The content of trans-zeatin (tZ) in roots of self-grafted plants first increased and then decreased with the extension of the high-temperature duration (Fig. 3a). The highest tZ value was observed at 6 h, the content was approximately 2.5 fold higher than that of the control treatment, and the content of tZ was close to detection limit after heat stress for 48 h. The change trend of tZ content in the roots of bitter gourd rootstock grafted seedlings was similar to that of self-rooted cucumber grafted seedlings. However, after 48 h of heat stress treatment, the content of tZ only dropped to half of the normal temperature control (Fig. 3a). The content of trans-zeatin riboside (tZR) in the roots of the grafted plants was similar to that of tZ in the grafted seedlings. But, the peak value emerged at 3 h and 6 h after heat stress in self-grafted plants and bitter gourd grafted plants, respectively (Fig. 3c). The content of N6-(Δ2-isopentenyl) adenine (iP) in the roots of grafted cucumber seedlings did not change significantly with high-temperature treatment (Fig. 3e).

      Figure 3. 

      Effects of bitter gourd rootstock on CTK content in cucumber leaves and roots, CTK biosynthesis in cucumber leaves. (a) The content of tZ in roots of grafted plants after exposure to heat stress for 0, 1, 3, 6, 12, 24, 48 h. (b) The content of tZ in leaves of grafted plants after exposure to heat stress for 0, 1, 3, 6, 12, 24, 48 h. (c) The content of tZR in roots of grafted plants after exposure to heat stress for 0, 1, 3, 6, 12, 24, 48 h. (d) The content of tZR in leaves of grafted plants after exposure to heat stress for 0, 1, 3, 6, 12, 24, 48 h. (e) The content of iP in roots of grafted plants after exposure to heat stress for 0, 1, 3, 6, 12, 24, 48 h. (f) The content of iP in leaves of grafted plants after exposure to heat stress for 0, 1, 3, 6, 12, 24, 48 h. (g) The expression level of IPT3 gene in leaves of grafted plants. Each bar represents the mean ± SE of three independent experiments. Means followed by different letters indicate significant differences between treatments (p < 0.05) according to Duncan's multiple range tests.

      In contrast, the contents of tZ and tZR in the leaves of grafted seedlings decreased significantly with the extension of the treatment time. The content of tZ and tZR in self-grafted plants were close to the detection limit up to 48 h after high temperature treatment (Fig. 3b, d). But, with the extension of the treatment time, the contents of tZ and tZR in the leaves of bitter gourd rootstock grafted plants were always higher than that of the self-grafted plants (Fig. 3b, d). Interestingly, the iP content in the leaves of self-grafted plants did not change significantly with high-temperature treatment, but in bitter gourd rootstock-grafted plants the content of iP first increased and then decreased with the extension of the high temperature duration. After 12 h of heat stress, the iP content reached the peak position and was about 2.7 folds higher than that of the control treatment after heat stress for 48 h (Fig. 3f). Higher cytokinins in bitter gourd rootstock plants positively affected the expression of photosynthesis-related proteins and enhanced the heat tolerance of grafted seedlings.

      In addition, we also measured the changes in IPT3, a key limiting gene for CTK biosynthesis, in grafting plants after exposure to heat stress. Under control conditions, IPT3 expression in bitter gourd grafted plants was 23% higher than that of self-grafted plants. After being exposed to heat stress treatment, the gene expression level of IPT3 in bitter gourd-grafted plants and self-grafted plants decreased by 33% and 72%, respectively (Fig. 3g).

    • To understand more insight of CTK contribution on photosynthetic capacity in grafted plants, we applied exogenous tZ treatment to grafted plants. As expected, exogenous tZ enhanced the heat resistance of the grafted cucumber by increasing photosynthesis. The results demonstrated that 10 μM tZ was the most effective in alleviating heat stress. As shown in Fig. 4a, the Fv/Fm increased with an increase in tZ concentration up to 10 μM. And further increase in tZ concentration up to 20 μM did not significantly increase the value of Fv/Fm. Furthermore, the heat-induced decline in Pn was attenuated by the spraying of tZ, and the greatest induction was observed in plants that at the concentration of 10 μM. These results indicate that exogenous spraying of tZ can effectively improve the photosynthetic parameters under high-temperature stress.

      Figure 4. 

      Effects of exogenous trans-zeatin (tZ) on Fv/Fm and Pn of grafted plants under heat stress. (a) Changes in the maximum photochemical efficiency of PSII (Fv/Fm). Plants were pretreated with 0, 1, 5, 10, 20 μM tZ for 12 h and then plants were exposed to heat stress at 42 °C for 48 h. (b) Changes in the net CO2 assimilation (Pn). Plants were pretreated with 0, 1, 5, 10, 20 μM tZ for 12 h and then plants were exposed to heat stress at 42 °C for 48 h. Each bar represents the mean ± SE of three independent experiments. Means followed by different letters indicate significant differences between treatments (p < 0.05) according to Duncan's multiple range tests.

      In addition, we also measured the gene expression level of RbcL and the activity of Rubisco. Grafting plants pretreated with 10 μM tZ for 12 h significantly improved the expression level of RbcL gene under heat stress (Supplemental Fig. S2). Moreover, exogenous tZ could effectively alleviate the decrease in Rubisco enzyme activity caused by high temperature stress (Supplemental Fig. S2).

    • To confirm the role of root-sourced CTK in photosynthesis-related proteins, we examined the effect of lovastatin (Lov, an inhibitor of the synthesis of isoprenoids and especially of CTKs) on bitter gourd rootstock-induced RbcL expression and subsequent heat tolerance after exposure to 42 °C for 48 h. As shown in Fig. 5, bitter gourd rootstock-induced RbcL protein accumulation under heat stress, but the protective effect was completely prevented by pretreatment with Lov. Furthermore, 10 μM tZ can effectively promote the accumulation of RbcL protein. These results strongly indicate that CTK was involved in the bitter gourd rootstock-induced accumulation of RbcL protein and subsequent heat tolerance.

      Figure 5. 

      Effects of CTK signal on RbcL accumulation. Plants grafted onto cucumber and bitter gourd were treated with 42 °C for 48 h; after 10 μM Lov pretreatment for 12 h, then plants were exposed to 42 °C for 12 h; 10 μM Lov pretreatment for 12 h, then plants were exposed to heat stress for 12 h, and then replenishment group were sprayed with 10 μM tZ. The control groups were treated with 28 °C.

    • Grafting is a widely used viable technique that enhances stress resistance, and improves the yield and quality of crops in agriculture. However, grafting mainly focuses on the application of rootstocks to improve resistance of scions[8, 16]. Grafting onto rootstocks with longer roots can improve the stomatal conductance of grapes and enhance the resistance under low and moderate water deficient conditions[25]. In the present study, we found that heat resistant bitter gourd-rootstock significantly improved the accumulation of biomass and photosynthetic capacity of cucumbers under high-temperatures. The higher heat tolerance of bitter gourd rootstock grafting was associated with a lower decline of Pn, Fv/Fm, and chlorophyll content and the values of these components was higher in bitter gourd grafted cumber seedlings as compared with cucumber self-grafting plants under heat stress (Fig. 1). Therefore, grafting is an effective agricultural technique to prevent yield reduction and protect the photosynthetic apparatus.

      Rubisco, the key enzyme of the Calvin cycle, and is the most abundant protein in plants[26, 27]. However, Rubisco-mediated CO2 fixation in chloroplasts is catalytically slow, competitively inhibited by oxygen, and makes inefficient use of water[28, 29]. Various strategies have been used to increase plants photosynthetic performance, such as the engineering of Rubisco, optimizing the Calvin Cycle, and changing the expression level of enzymes within the Calvin Cycle. By increasing the thermo-stability of RCA in Arabidopsis, improved photosynthesis and growth rate under a moderate heat stress[30, 31]. In the present study, we found that increased heat tolerance associated with increasing in transcript abundance and protein expression of RbcL and Lhcb2, suggests that the use of bitter gourd as rootstock might promote the accumulation of RbcL and Lhcb2 to improve plant heat tolerance (Fig. 2a, c & d). However, in our study, RCA was up-regulated by heat, and the abundance and protein expression of RCA were lower in bitter gourd rootstock grafting plants than in self-grafted plants under heat stress (Fig. 2b, d). It might account for the number of Rubisco protein lost activity in self-grafted plants is more than that in bitter gourd grafted plants under heat stress. The catalytic chaperone RCA can remove sugar phosphate inhibitors from an inactive uncarbamylated enzyme or an inhibited carbamylated Rubisco[32]. High temperature causes chlorophyll degradation, and chlorophyll degradation causes LHCII damage[7, 33]. The highest accumulation of Lhcb2 protein and chlorophyll content was found in bitter gourd-grafted plants under heat stress (Fig. 1b, Fig. 2d). These results suggest that bitter gourd rootstock-induced heat tolerance was associated with a accumulation of photosynthetic proteins.

    • Cytokinins are key regulators of a wide range of plant growth processes, with highly flexible and adaptable properties[34]. Under heat stress, endogenous CTKs are involved in regulation of stomatal aperture and subsequently transpiration[35]. Exogenous application of CTK alleviates the inhibition of heat stress on photosynthetic activity and delays chlorophyll decrease[36, 37]. In this study, the contents of tZ and tZR in root, and iP in bitter gourd grafted-plants leaves were significantly increased after short term exposued to heat stress. On the other hand, long-term heat stress profoundly decreased the three kinds of CTKs in both roots and leaves (Fig. 3af). Interestingly, the IPT3 gene did not increase in leaves (Fig. 3g). In the case of short-term heat stress, the endogenous CTK was increased. Under heat stress, the effect of CTK on stomata opening followed by stimulation of leaf transpiration is crucial in the early phase of the stress response[38].The opening of the stomata is beneficial to increase the leaf transpiration rate and reduce the leaf surface temperature. CTK levels are maintained mainly by CTK biosynthesis and degradation genes in plants[39]. The IPT3 gene in grafted plant leaves was decreased after exposure to high temperature, indicating that compared with self-grafted cucumber bitter gourd-grafted cucumber alleviated the decrease of CTK transported from roots to shoots, and these findings suggest that CTK acts as signal molecule involved in heat stress responses.

      In order to further justify the CTK role in signaling transmission in the heat shock response of bitter gourd rootstock grafted plants, we applied Lovastatin (an inhibitor of CTK biosynthesis) which inhibited CTK production. In a previous study, Lovastatin treatments inhibited endogenous CTK production in the seminal root and also reduced rice root growth[40]. Study proposed that proteome-level interactions maybe involved in some cytokinin-temperature signaling cross-talk[41]. In the expression level of present study, the RbcL protein decreased in grafted plants after Lovastatin treatment, and increased by spraying tZ (Fig. 5). All of these findings indicate that endogenous CTK induced Rubisco expression in grafted plants in response to heat stress.

    • In conclusion, we have demonstrated that grafting to the heat resistant rootstock can improve the cucumber plants heat tolerance by alleviating photosynthesis inhibition. This enhancement of photosynthetic capacity was associated with the accumulation of chlorophyll content, the lower decrease of RbcL transcription and Rubisco activity, and the higher content of CTKs. The higher accumulation of RbcL protein in the bitter gourd rootstock plants was attributed to an increase in the content of CTKs transported from roots (Fig. 6). These results support the hypothesis that a systemic response involving root−shoot communication during heat stress is mediated by CTK. Taken together, root-sourced CTK signaling is involved in the bitter gourd rootstock-induced heat resistance and plays a critical role in root−shoot communication in response to heat stress.

      Figure 6. 

      Proposed model for CTK mediating a RbcL protein accumulation and heat tolerance in cucumber plants grafted onto bitter gourd rootstocks.

    • Two different species, cucumber (Cucumis sativus L., cv. Jinyou No.35, Cs) and bitter gourd (Momordica charantia L., cv. Changlv, Mc) were used as the scions and rootstock, respectively. Plant materials were made by applying cleft grafting, and self-grafted plants were denoted as controls. Seeds of rootstock were sown in 15-cell trays, and seeds of scions were sown in 108-cell trays filled with commercial organic substrate.

      When the second true leaves of the rootstock seedlings fully developed and the cotyledons of the scions expanded completely, cleft grafting was performed. After grafting, plants were transferred to the graft healing chamber and maintained at a temperature of 25−30 °C and a relative humidity of 85%−100% for 7 d until the graft union completely healed. The grafted seedlings were then moved to growth chambers with the following environmental conditions, 12 h photoperiod, temperature of 28/18 °C (day/night) and photosynthetic photon flux density (PPFD) of 300 μmol m−2·s−1, relative humidity of 70%−75%.

    • When the third leaves of grafted seedlings fully expanded, they were exposed to a variety of treatments: 1) self-grafted plants subjected to 28/18 °C (day/night), Cs-28; 2) bitter gourd-grafted plants subjected to 28/18 °C (day/night), Mc-28; 3) self-grafted plants subjected to 42/32 °C (day/night), Cs-42; 4) bitter gourd-grafted plants subjected to 42/32 °C (day/night), Mc-42. After being exposed to high temperatures, plant leaf samples (the third leaf from the bottom) were harvested at different time points for various purposes, such as follows the gene relative expression level of IPT3 at 6 h for quantify the chlorophyll fluorescence and the gene expression level of photosynthetic proteins (RbcL, RCA, Lhcb2) at 24 h, to determination the content of chlorophyll, photosynthetic protein (RbcL, RCA, Lhcb2) expression levels and the net photosynthetic rate (Pn) at 48 h; the cytokinin content (tZ, tZR, iP); and for the measurement of fresh and dry weight. All the leaf samples were immediately flash-frozen in liquid nitrogen and stored at −80 °C for subsequent gene expression and protein analysis.

      To investigate the effects of exogenous tZ on grafted cucumber plants tolerance to heat stress, cucumber self-grafted and bitter gourd-grafted seedlings were sprayed with tZ (Sigma-Aldrich) at 1, 5, 10, and 20 μM at the four-leaf stage, where distilled water spray was used as the control. The tZ solutions were prepared by dissolving the solute in dimethyl sulfoxide (DMSO) followed by dilution with distilled water. The plants were exposed to a heat stress of 42/32 °C after 12 h of spraying of tZ at the above mentioned-concentrations. The maximum photochemical efficiency of PSII (Fv/Fm) at 24 h, and the net CO2 assimilation (Pn) at 48 h were measured after exposure to heat stress. A 10 μM concentration of tZ was used to investigate the effects of tZ on the gene expression of RbcL, the protein expression level of RbcL, and the enzyme activity of Rubisco.

      The tZ, tZR and iP contents in both leaves and roots were measured at 0, 1, 3, 6, 12, 24, 48 h after exposure to heat stress. To examine the role of CTKs in rootstock to heat resistance, the leaves of self-grafted seedlings were pretreated with 20 μM Lovastatin (Lov, a synthetic inhibitor of cytokinin), solutions were prepared by dissolving the solute in DMSO, and after 12 h of treatment, and plants were transferred to a growth chamber at 42/32 °C for heat stress. The protein expression level of RbcL and Rubisco activity were measured after 48 h of heat stress.

    • After 5 d of treatment, the plants were washed with sterile distilled water, dried with bibulous paper, and then measured fresh (FW) and dry (DW) weights. For the measurement of dry weight, plants were incubated at 105 °C for 15 min, followed by 70 °C for 72 h following which the measurements were made. After 48 h of treatment, the leaves of grafted plants were soaked in absolute ethanol followed by centrifuge at 5,000 ×g for 2 min and the supernatant was collected. The absorbance of the supernatant was detected at 649 nm and 665 nm. The total chlorophyll, chlorophyll a, and chlorophyll b content were calculated according to relative equations, respectively[42].

      Chla = 13.95 × OD665 − 6.88 × OD649

      Chlb = 24.96 × OD649 − 7.32 × OD665

      After 48 h of treatment, the Pn was measured with a portable photosynthesis system (LI-6400, LI-COR Inc., Lincoln, USA), at a temperature of 25 °C, 85% relative humidity, a cuvette air flow rate of 500 ml min−1, and an ambient CO2 concentration of 380 μmol mol−1. A PPFD of 600 μmol m−2·s−1was provided by a mixture of red blue light-emitting diodes.

    • Chlorophyll fluorescence was determined with an imaging-PAM (pulse-amplitude-modulated) chlorophyll fluorometer (Heinz Walz, GmbH, Effeltrich, Germany) of the third leaf from the bottom after exposure to heat treatment for 24 h. The plants were dark-adapted for 30 min to measure the maximum photochemical efficiency of PSII (Fv/Fm). The values of Fv/Fm and the quantum efficiency of PSII (ΦPSII) were determined using the entire area of the third leaf from the bottom[43].

    • The extraction and determination of cytokinin (iP, tZ, and tZR) was performed according to Bieleski with little modification[44]. Briefly, frozen leaves (about 0.5 g) were crushed to a fine powder using a Tissue Lyser, with a zirconia bead in a 10 ml centrifuge tube, and then soaked in 5 ml of extraction solvent (methanol: formic acid: water = 15:1:4, v/v/v). The homogenate was kept at −20 °C for at least 16 h. After centrifugation at 10,000 ×g for 15 min, the supernatant was transferred to a new centrifuge tube, and the pellet was re-extracted with 2 ml of extraction solvent, and combined with the first supernatant. The crude extract supernatants were filtered through the Sep-Pak C18 cartridge and dried under a stream of N2. The dried samples was resuspended with 50% methanol. Then, ultra-performance liquid chromatography (UPLC) was used to determine the three common forms of cytokinin iP, tZ, tZR.[4548].

    • Total RNA was extracted from cucumber leaves according to the manufacturer's instructions using an RNA simple Total RNA Kit (Tiangen, China). One microgram of total RNA was used to reverse transcribe to a cDNA template using the ReverTra Ace qPCR RT Kit (Takara, Japan). Quantitative real-time polymerase chain reaction (qRT-PCR) assays were performed using SYBR Green PCR Master Mix (Takara, Japan) in a StepOnePlusTM real-Time PCR System (Applied Biosystems, USA). The PCR conditions consisted of denaturation at 95 °C for 3 min, followed by 40 cycles of denaturation at 95 °C for 15 s, annealing at 58 °C for 15 s and extension at 72 °C for 30 s. The cucumber actin gene was used as an internal control. Gene-specific primers were designed according to the cDNA sequences as described in Supplemental Table S1. Relative gene expression was calculated by the 2−ΔΔCᴛ method[49].

    • The cucumber leaves were ground in liquid nitrogen and homogenized in extraction buffer (30 mM Tris-HCl (pH8.7), 1 mM MgCl2, 0.7 M sucrose, 1 mM ethylenediami-netetraacetic acid (EDTA), 1 mM DTT, 1 mM phenylmethanesulfonyl fluoride (PMSF) and 1 mM ascorbic acid) to extract proteins[50]. Protein concentrations were measured using a Bio-Rad protein assay kit (USA), denatured at 95 °C for 5 min and stored at −20 °C for further analysis. The denatured protein extracts (10 μg) were separated using a 12% SDS-PAGE for Western blotting, and the proteins on the SDS–PAGE gel were transferred to a 0.45μm poly vinylidene fluoride (PVDF) membrane. The membrane was blocked with 5% non-fat dry milk for 1 h, washed with TBST buffer (including Tris-HCl, NaCl, and tween 20) three times, and incubated with a mouse anti-Rubisco large subunit monoclonal antibody, a rabbit anti-Rubisco small subunit monoclonal antibody, a rabbit anti-Lhcb2 monoclonal antibody, a rabbit anti-Rubisco activase monoclonal antibody, and a rabbit anti-actin antibody for 2 h. The membrane was washed with TBST buffer and incubated at room temperature for 1 h with Goat Anti-Rat IgG HRP-conjugate antibody or Goat Anti-rabbit IgG HRP-conjugate antibody. Finally, the membrane was washed with TBST three times and developed using ultra-sensitive ECL chemiluminescence reagent.

    • At least three independent biological replicates were used for each determination. All data were statistically analyzed using SPSS 23.0 software (SPSS Inc., Chicago, IL, USA), and the mean differences among the treatments were calculated with Duncan's multiple range test at p < 0.05.

      • This work was supported by the China Agriculture Research System (CARS-23-B12).

      • The authors declare that they have no conflict of interest.

      • Supplemental Fig. S1 Effects of Momordca rootstock on root and shoot morphology of grafted cucumber plants under high temperature stress (a) shoot part (b) root part. Plants were exposed to heat stress at 42 °C for 48 h. Cs-28: self-grafted plants subjected to 28/18 °C (day/night). Mc-28: Bitter gourd-grafted plants subjected to 28/18 °C (day/night). Cs-42: self-grafted plants subjected to 42/32 °C (day/night). Mc-42: Bitter gourd-grafted plants subjected to 42/32 °C (day/night).
      • Supplemental Fig. S2 Effects of exogenous trans-zeatin (tZ) on RbcL gene expression level and Rubisco activity of grafted plants under heat stress. (a) Changes in the gene relative expression level of RbcL Plants were pretreated with 10 μM tZ for 12 h and then plants were exposed to heat stress at 42 °C for 48 h. (b) Changes in the Rubisco activity. Plants were pretreated with 10 μM tZ for 12 h and then plants were exposed to heat stress at 42 °C for 48 h.
      • Supplemental Table S1 Primers used to quantify the expression levels of genes using in real-time PCR analysis.
      • Copyright: © 2023 by the author(s). Published by Maximum Academic Press, Fayetteville, GA. This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.
    Figure (6)  Table (1) References (50)
  • About this article
    Cite this article
    Han S, Shu S, Wang Y, Jahan MS, Sun J, et al. 2022. Cytokinin plays a critical role in bitter gourd rootstock-induced thermotolerance of cucumber. Vegetable Research 2:4 doi: 10.48130/VR-2022-0004
    Han S, Shu S, Wang Y, Jahan MS, Sun J, et al. 2022. Cytokinin plays a critical role in bitter gourd rootstock-induced thermotolerance of cucumber. Vegetable Research 2:4 doi: 10.48130/VR-2022-0004

Catalog

  • About this article

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return