[1] |
Li Y, Jiang W, Liu C, Fu Y, Wang Z, et al. 2021. Comparison of fruit morphology and nutrition metabolism in different cultivars of kiwifruit across developmental stages. PeerJ 9:e11538 doi: 10.7717/peerj.11538
|
[2] |
Cruz-Castillo JG, Baldicchi A, Frioni T, Marocchi F, Moscatello S, et al. 2014. Pre–anthesis CPPU low dosage application increases 'Hayward' kiwifruit weight without affecting the other qualitative and nutritional characteristics. Food Chemistry 158:224−28 doi: 10.1016/j.foodchem.2014.01.131
|
[3] |
Jaeger SR, Harker R, Triggs CM, Gunson A, Campbell RL, et al. 2011. Determining consumer purchase intentions: the importance of dry matter, size, and price of kiwifruit. Journal of Food Science 76:S177−S184 doi: 10.1111/j.1750-3841.2011.02084.x
|
[4] |
Kumar R, Khurana A, Sharma AK. 2014. Role of plant hormones and their interplay in development and ripening of fleshy fruits. Journal of Experimental Botany 65:4561−75 doi: 10.1093/jxb/eru277
|
[5] |
McAtee P, Karim S, Schaffer R, David K. 2013. A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening. Frontiers in Plant Science 4:79 doi: 10.3389/fpls.2013.00079
|
[6] |
Pattison RJ, Catalá C. 2012. Evaluating auxin distribution in tomato (Solanum lycopersicum) through an analysis of the PIN and AUX/LAX gene families. The Plant Journal 70:585−98 doi: 10.1111/j.1365-313X.2011.04895.x
|
[7] |
Stern RA, Flaishman M, Applebaum S, Ben-Arie R. 2007. Effect of synthetic auxins on fruit development of 'Bing' cherry (Prunus avium L.). Scientia Horticulturae 114:275−80 doi: 10.1016/j.scienta.2007.07.010
|
[8] |
Park J, Lee S, Park G, Cho H, Choi D, et al. 2021. CYTOKININ-RESPONSIVE GROWTH REGULATOR regulates cell expansion and cytokinin–mediated cell cycle progression. Plant Physiology 186:1734−46 doi: 10.1093/plphys/kiab180
|
[9] |
Pattison RJ, Csukasi F, Catalá C. 2014. Mechanisms regulating auxin action during fruit development. Physiologia Plantarum 151:62−72 doi: 10.1111/ppl.12142
|
[10] |
Sun T. 2008. Gibberellin metabolism, perception and signaling pathways in Arabidopsis. The Arabidopsis Book 6:e0103 doi: 10.1199/tab.0103
|
[11] |
Koch K. 2004. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Current Opinion in Plant Biology 7(3):235−46 doi: 10.1016/j.pbi.2004.03.014
|
[12] |
Farrar JF. 1993. Sink strength: What is it and how do we measure it? Introduction Plant Cell & Environment 16:1015−16 doi: 10.1111/j.1365-3040.1996.tb02047.x
|
[13] |
Marcelis LFM. 1996. Sink strength as a determinant of dry matter partitioning in the whole plant. Journal of Experimental Botany 47:1281−91 doi: 10.1093/jxb/47.Special_Issue.1281
|
[14] |
Moscatello S, Famiani F, Proietti S, Farinelli D, Battistelli A. 2011. Sucrose synthase dominates carbohydrate metabolism and relative growth rate in growing kiwifruit (Actinidia deliciosa, cv Hayward). Scientia Horticulturae 128:197−205 doi: 10.1016/j.scienta.2011.01.013
|
[15] |
Sturm A. 1999. Invertases. Primary structures, functions and roles in plant development and sucrose partitioning. Plant Physiology 121:1−8 doi: 10.1104/pp.121.1.1
|
[16] |
Tian X, Zhu L, Yang N, Song J, Zhao H, et al. 2021. Proteomics and metabolomics reveal the regulatory pathways of ripening and quality in post–harvest kiwifruits. Journal of Agricultural and Food Chemistry 69:824−35 doi: 10.1021/acs.jafc.0c05492
|
[17] |
Kim JG, Takami Y, Mizugami T, Beppu K, Fukuda T, et al. 2006. CPPU application on size and quality of hardy kiwifruit. Scientia Horticulturae 110:219−22 doi: 10.1016/j.scienta.2006.06.017
|
[18] |
Zhang C, Whiting MD. 2011. Improving 'Bing' sweet cherry fruit quality with plant growth regulators. Scientia Horticulturae 127:341−46 doi: 10.1016/j.scienta.2010.11.006
|
[19] |
Banyal AK, Banyal SK. 2020. Forchlorfenuron (CPPU): a promising plant growth regulator augments fruit size, fruit weight, quality and yield of kiwifruit (Actinidia deliciosa) cv. Hayward. International Journal of Current Microbiology and Applied Sciences 9:2091−101 doi: 10.20546/ijcmas.2020.905.240
|
[20] |
Zabadal TJ, Bukovac MJ. 2006. Effect of CPPU on fruit development of selected seedless and seeded grape cultivars. HortScience 41:154−57 doi: 10.21273/hortsci.41.1.154
|
[21] |
Hayata Y, Niimi Y, Iwasaki N. 1995. Synthetic cytokinin-1-(2-chloro-4-pyridyl)-3-phenylurea (CPPU)-promotes fruit set and induces parthenocarpy in watermelon. Journal of the American Society for Horticultural Science 120:997−1000 doi: 10.21273/JASHS.120.6.997
|
[22] |
Bangerth F, Schröder M. 1994. Strong synergistic effects of gibberellins with the synthetic cytokinin N-(2-chloro-4-pyridyl)-N-phenylurea on parthenocarpic fruit set and some other fruit characteristics of apple. Plant Growth Regulation 15:293−302 doi: 10.1007/BF00029902
|
[23] |
Flaishman M, Amihai Shargal AS, Raphael S. 2001. The synthetic cytokinin CPPU increases fruit size and yield of 'Spadona' and 'Costia' pear (Pyrus communis L.). The Journal of Horticultural Science and Biotechnology 76:145−49 doi: 10.1080/14620316.2001.11511341
|
[24] |
Famiani F, Battistelli A, Moscatello S, Boco M, Antognozzi E. 1999. Thidiazuron affects fruit growth, ripening and quality of Actinidia deliciosa. The Journal of Horticultural Science and Biotechnology 74:375−80 doi: 10.1080/14620316.1999.11511124
|
[25] |
Wu L, Lan J, Xiang X, Xiang H, Jin Z, et al. 2020. Transcriptome sequencing and endogenous phytohormone analysis reveal new insights in CPPU controlling fruit development in kiwifruit (Actinidia chinensis). PLoS One 15:e0240355 doi: 10.1371/journal.pone.0240355
|
[26] |
Patterson KJ, Mason KA, Gould KS. 1993. Effects of CPPU (N-(2-chloro-4-pyridyl)-N'-phenylurea) on fruit–growth, maturity, and storage quality of kiwifruit. New Zealand Journal of Crop and Horticultural Science 21:253−61 doi: 10.1080/01140671.1993.9513777
|
[27] |
Ainalidou A, Tanou G, Belghazi M, Samiotaki M, Diamantidis G, et al. 2016. Integrated analysis of metabolites and proteins reveal aspects of the tissue–specific function of synthetic cytokinin in kiwifruit development and ripening. Journal of Proteomics 143:318−33 doi: 10.1016/j.jprot.2016.02.013
|
[28] |
Li M, Feng F, Cheng L. 2012. Expression patterns of genes involved in sugar metabolism and accumulation during apple fruit development. PLoS One 7:e33055 doi: 10.1371/journal.pone.0033055
|
[29] |
Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12:357−60 doi: 10.1038/nmeth.3317
|
[30] |
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25:2078−79 doi: 10.1093/bioinformatics/btp352
|
[31] |
Liao Y, Smyth GK, Shi W. 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923−30 doi: 10.1093/bioinformatics/btt656
|
[32] |
Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA–seq data with DESeq2. Genome Biology 15:550 doi: 10.1186/s13059-014-0550-8
|
[33] |
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCᴛ Method. Methods 25:402−8 doi: 10.1006/meth.2001.1262
|
[34] |
Nardozza S, Boldingh HL, Wohlers MW, Gleave AP, Luo Z, et al. 2017. Exogenous cytokinin application to Actinidia chinensis var. deliciosa 'Hayward' fruit promotes fruit expansion through water uptake. Horticulture Research 4:17043 doi: 10.1038/hortres.2017.43
|
[35] |
Li M, Li D, Feng F, Zhang S, Ma F, et al. 2016. Proteomic analysis reveals dynamic regulation of fruit development and sugar and acid accumulation in apple. Journal of Experimental Botany 67:5145−57 doi: 10.1093/jxb/erw277
|
[36] |
Ruan Y. 2014. Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annual Review of Plant Biology 65:33−67 doi: 10.1146/annurev-arplant-050213-040251
|
[37] |
Chen C, Yuan Y, Zhang C, Li H, Ma F, et al. 2017. Sucrose phloem unloading follows an apoplastic pathway with high sucrose synthase in Actinidia fruit. Plant Science 255:40−50 doi: 10.1016/j.plantsci.2016.11.011
|
[38] |
Yang J, Zhu L, Cui W, Zhang C, Li D, et al. 2018. Increased activity of MdFRK2, a high-affinity fructokinase, leads to upregulation of sorbitol metabolism and downregulation of sucrose metabolism in apple leaves. Horticultural Research 5:71 doi: 10.1038/s41438-018-0099-x
|
[39] |
Yoon J, Cho LH, Tun W, Jeon JS, An G. 2021. Sucrose signaling in higher plants. Plant Science 302:110703 doi: 10.1016/j.plantsci.2020.110703
|
[40] |
Csukasi F, Osorio S, Gutierrez JR, Kitamura J, Giavalisco P, et al. 2011. Gibberellin biosynthesis and signalling during development of the strawberry receptacle. New Phytologist 191:376−90 doi: 10.1111/j.1469-8137.2011.03700.x
|
[41] |
Zhao Y. 2010. Auxin biosynthesis and its role in plant development. Annual Review of Plant Biology 61:49−64 doi: 10.1146/annurev-arplant-042809-112308
|
[42] |
Petrášek J, Friml J. 2009. Auxin transport routes in plant development. Development 136:2675−88 doi: 10.1242/dev.030353
|
[43] |
Lewis DH, Burge GK, Hopping ME, Jameson PE. 1996. Cytokinins and fruit development in the kiwifruit (Actinidia deliciosa). II. Effects of reduced pollination and CPPU application. Physiologia Plantarum 98:187−95 doi: 10.1111/j.1399-3054.1996.tb00691.x
|