[1]

Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. 1998. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281:237−40

doi: 10.1126/science.281.5374.237
[2]

Li L, Lu S, Chiang V. 2006. A genomic and molecular view of wood formation. Critical Reviews in Plant Sciences 25:215−33

doi: 10.1080/07352680600611519
[3]

Plomion C, Leprovost G, Stokes A. 2001. Wood Formation in Trees. Plant Physiology 127:1513−23

doi: 10.1104/pp.010816
[4]

Smetana O, Mäkilä R, Lyu M, Amiryousefi A, Sánchez Rodríguez F, et al. 2019. High levels of auxin signalling define the stem-cell organizer of the vascular cambium. Nature 565:485−89

doi: 10.1038/s41586-018-0837-0
[5]

Tuominen H, Puech L, Fink S, Sundberg B. 1997. A radial concentration gradient of indole-3-acetic acid is related to secondary xylem development in hybrid aspen. Plant Physiology 115:577−85

doi: 10.1104/pp.115.2.577
[6]

Immanen J, Nieminen K, Smolander OP, Kojima M, Alonso Serra J, et al. 2016. Cytokinin and auxin display distinct but interconnected distribution and signaling profiles to stimulate cambial activity. Current Biology 26:1990−97

doi: 10.1016/j.cub.2016.05.053
[7]

Brackmann K, Qi J, Gebert M, Jouannet V, Schlamp T, et al. 2018. Spatial specificity of auxin responses coordinates wood formation. Nature Communications 9:875

doi: 10.1038/s41467-018-03256-2
[8]

Zheng S, He J, Lin Z, Zhu Y, Sun J, et al. 2021. Two MADS-box genes regulate vascular cambium activity and secondary growth by modulating auxin homeostasis in Populus. Plant Communications 2:100134

doi: 10.1016/j.xplc.2020.100134
[9]

Moyle R, Schrader J, Stenberg A, Olsson O, Saxena S, et al. 2002. Environmental and auxin regulation of wood formation involves members of the Aux/IAA gene family in hybrid aspen. The Plant Journal 31:675−85

doi: 10.1046/j.1365-313X.2002.01386.x
[10]

Nilsson J, Karlberg A, Antti H, Lopez-Vernaza M, Mellerowicz E, et al. 2008. Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen. The Plant Cell 20:843−55

doi: 10.1105/tpc.107.055798
[11]

Xu C, Shen Y, He F, Fu X, Yu H, et al. 2019. Auxin-mediated Aux/IAA-ARF-HB signaling cascade regulates secondary xylem development in Populus. New Phytologist 222:752−67

doi: 10.1111/nph.15658
[12]

Kalluri UC, Difazio SP, Brunner AM, Tuskan GA. 2007. Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa. BMC Plant Biology 7:59

doi: 10.1186/1471-2229-7-59
[13]

Nieminen K, Immanen J, Laxell M, Kauppinen L, Tarkowski P, et al. 2008. Cytokinin signaling regulates cambial development in poplar. PNAS 105:20032−37

doi: 10.1073/pnas.0805617106
[14]

Fu X, Su H, Liu S, Du X, Xu C, Luo K. 2021. Cytokinin signaling localized in phloem noncell-autonomously regulates cambial activity during secondary growth of Populus stems. New Phytologist 230:1476−88

doi: 10.1111/nph.17255
[15]

Kim SK, Abe H, Little CHA, Pharis RP. 1990. Identification of 2 Brassinosteroids from the Cambial Region of Scots Pine (Pinus-Silverstris) by Gas-Chromatography Mass-Spectrometry, after Detection Using a Dwarf Rice Lamina Inclination Bioassay. Plant Physiology 94:1709−13

doi: 10.1104/pp.94.4.1709
[16]

Du J, Gerttula S, Li Z, Zhao S, Liu Y, et al. 2020. Brassinosteroid regulation of wood formation in poplar. New Phytologist 225:1516−30

doi: 10.1111/nph.15936
[17]

Junghans U, Langenfeld-Heyser R, Polle A, Teichmann T. 2004. Effect of auxin transport inhibitors and ethylene on the wood anatomy of poplar. Plant Biology 6:22−29

doi: 10.1055/s-2003-44712
[18]

Love J, Björklund S, Vahala J, Hertzberg M, Kangasjärvi J, et al. 2009. Ethylene is an endogenous stimulator of cell division in the cambial meristem of Populus. PNAS 106:5984−89

doi: 10.1073/pnas.0811660106
[19]

Mauriat M, Moritz T. 2009. Analyses of GA20ox- and GID1-over-expressing aspen suggest that gibberellins play two distinct roles in wood formation. The Plant Journal 58:989−1003

doi: 10.1111/j.1365-313X.2009.03836.x
[20]

Arend M, Fromm J. 2013. Concomitant analysis of cambial abscisic acid and cambial growth activity in poplar. Trees 27:1271−76

doi: 10.1007/s00468-013-0875-z
[21]

Fletcher JC. 2020. Recent Advances in Arabidopsis CLE Peptide Signaling. Trends in Plant Science 25:1005−16

doi: 10.1016/j.tplants.2020.04.014
[22]

Jun J, Fiume E, Roeder AHK, Meng L, Sharma VK, et al. 2010. Comprehensive analysis of CLE polypeptide signaling gene expression and overexpression activity in Arabidopsis. Plant Physiology 154:1721−36

doi: 10.1104/pp.110.163683
[23]

Etchells JP, Mishra LS, Kumar M, Campbell L, Turner SR. 2015. Wood formation in trees is increased by manipulating PXY-regulated cell division. Current Biology 25:1050−55

doi: 10.1016/j.cub.2015.02.023
[24]

Hirakawa Y, Shinohara H, Kondo Y, Inoue A, Nakanomyo I, et al. 2008. Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. PNAS 105:15208−13

doi: 10.1073/pnas.0808444105
[25]

Kucukoglu M, Nilsson J, Zheng B, Chaabouni S, Nilsson O. 2017. WUSCHEL-RELATED HOMEOBOX4 (WOX4)-like genes regulate cambial cell division activity and secondary growth in Populus trees. New Phytologist 215:642−57

doi: 10.1111/nph.14631
[26]

Zhu Y, Song D, Zhang R, Luo L, Cao S, et al. 2020. A xylem-produced peptide PtrCLE20 inhibits vascular cambium activity in Populus. Plant Biotechnology Journal 18:195−206

doi: 10.1111/pbi.13187
[27]

Kucukoglu M, Chaabouni S, Zheng B, Mähönen AP, Helariutta Y, et al. 2020. Peptide encoding Populus CLV3/ESR-RELATED 47 (PttCLE47) promotes cambial development and secondary xylem formation in hybrid aspen. New Phytologist 226:75−85

doi: 10.1111/nph.16331
[28]

Whitford R, Fernandez A, De Groodt R, Ortega E, Hilson P. 2008. Plant CLE peptides from two distinct functional classes synergistically induce division of vascular cells. PNAS 105:18625−30

doi: 10.1073/pnas.0809395105
[29]

Etchells JP, Turner SR. 2010. The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development 137:767−74

doi: 10.1242/dev.044941
[30]

Sundell D, Street NR, Kumar M, Mellerowicz EJ, Kucukoglu M, et al. 2017. AspWood: high-spatial-resolution transcriptome profiles reveal uncharacterized modularity of wood formation in Populus tremula. The Plant Cell 29:1585−604

doi: 10.1105/tpc.17.00153
[31]

Schrader J, Nilsson J, Mellerowicz E, Berglund A, Nilsson P, et al. 2004. A high-resolution transcript profile across the wood-forming meristem of poplar identifies potential regulators of cambial stem cell identity. The Plant Cell 16:2278−92

doi: 10.1105/tpc.104.024190
[32]

Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE. 2005. Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. The Plant Cell 17:61−76

doi: 10.1105/tpc.104.026161
[33]

Izhaki A, Bowman JL. 2007. KANADI and class III HD-zip gene families regulate embryo patterning and modulate auxin flow during embryogenesis in Arabidopsis. The Plant Cell 19:495−508

doi: 10.1105/tpc.106.047472
[34]

McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, et al. 2001. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411:709−13

doi: 10.1038/35079635
[35]

Zhu Y, Song D, Sun J, Wang X, Li L. 2013. PtrHB7, a class III HD-zip gene, plays a critical role in regulation of vascular cambium differentiation in Populus. Molecular Plant 6:1331−43

doi: 10.1093/mp/sss164
[36]

Robischon M, Du J, Miura E, Groover A. 2011. The Populus class III HD ZIP, popREVOLUTA, influences cambium initiation and patterning of woody stems. Plant Physiology 155:1214−25

doi: 10.1104/pp.110.167007
[37]

Du J, Miura E, Robischon M, Martinez C, Groover A. 2011. The Populus Class III HD ZIP transcription factor POPCORONA affects cell differentiation during secondary growth of woody stems. PLoS One 6:e17458

doi: 10.1371/journal.pone.0017458
[38]

Zhu Y, Song D, Xu P, Sun J, Li L. 2018. A HD-ZIP III gene, PtrHB4, is required for interfascicular cambium development in Populus. Plant Biotechnology Journal 16:808−17

doi: 10.1111/pbi.12830
[39]

Tang X, Wang D, Liu Y, Lu M, Zhuang Y, et al. 2020. Dual regulation of xylem formation by an auxin-mediated PaC3H17-PaMYB199 module in Populus. New Phytologist 225:1545−61

doi: 10.1111/nph.16244
[40]

McNeil M, Darvill AG, Fry SC, Albersheim P. 1984. Structure and Function of the Primary-Cell Walls of Plants. Annual Review of Biochemistry 53:625−63

doi: 10.1146/annurev.bi.53.070184.003205
[41]

Carpita NC, Gibeaut DM. 1993. Structural models of primary-cell walls in flowering plants - consistency of molecular-structure with the physical-properties of the walls during growth. The Plant Journal 3:1−30

doi: 10.1111/j.1365-313X.1993.tb00007.x
[42]

Mellerowicz EJ, Sundberg B. 2008. Wood cell walls: biosynthesis, developmental dynamics and their implications for wood properties. Current Opinion in Plant Biology 11:293−300

doi: 10.1016/j.pbi.2008.03.003
[43]

Sampedro J, Cosgrove DJ. 2005. The expansin superfamily. Genome Biology 6:242

doi: 10.1186/gb-2005-6-12-242
[44]

McQueen-Mason S, Durachko DM, Cosgrove DJ. 1992. Two Endogenous Proteins That Induce Cell-Wall Extension in Plants. The Plant Cell 4:1425−33

doi: 10.1105/tpc.4.11.1425
[45]

Yennawar NH, Li L, Dudzinski DM, Tabuchi A, Cosgrove DJ. 2006. Crystal structure and activities of EXPB1 (Zea m 1), a β-expansin and group-1 pollen allergen from maize. PNAS 103:14664−71

doi: 10.1073/pnas.0605979103
[46]

Yuan S, Wu Y, Cosgrove DJ. 2001. A fungal endoglucanase with plant cell wall extension activity. Plant Physiology 127:324−33

doi: 10.1104/pp.127.1.324
[47]

Gray-Mitsumune M, Mellerowicz EJ, Abe H, Schrader J, Winzéll A, et al. 2004. Expansins abundant in secondary xylem belong to subgroup A of the α-expansin gene family. Plant Physiology 135:1552−64

doi: 10.1104/pp.104.039321
[48]

Gray-Mitsumune M, Blomquist K, McQueen-Mason S, Teeri TT, Sundberg B, et al. 2008. Ectopic expression of a wood-abundant expansin PttEXPA1 promotes cell expansion in primary and secondary tissues in aspen. Plant Biotechnology Journal 6:62−72

doi: 10.1111/j.1467-7652.2007.00295.x
[49]

Nishitani K, Tominaga R. 1992. Endo-xyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule. Journal of Biological Chemistry 267:21058−64

doi: 10.1016/S0021-9258(19)36797-3
[50]

Nishikubo N, Takahashi J, Roos AA, Derba-Maceluch M, Piens K, et al. 2011. Xyloglucan endo-transglycosylase-mediated xyloglucan rearrangements in developing wood of hybrid aspen. Plant Physiology 155:399−413

doi: 10.1104/pp.110.166934
[51]

Nishikubo N, Awano T, Banasiak A, Bourquin V, Ibatullin F, et al. 2007. Xyloglucan endo-transglycosylase (XET) functions in gelatinous layers of tension wood fibers in poplar—a glimpse into the mechanism of the balancing act of trees. Plant and Cell Physiology 48:843−55

doi: 10.1093/pcp/pcm055
[52]

Trainotti L, Spolaore S, Pavanello A, Baldan B, Casadoro G. 1999. A novel E-type endo-β-1,4-glucanase with a putative cellulose-binding domain is highly expressed in ripening strawberry fruits. Plant Molecular Biology 40:323−32

doi: 10.1023/A:1006299821980
[53]

Ohmiya Y, Nakai T, Park YW, Aoyama T, Oka A, et al. 2003. The role of PopCel1 and PopCel2 in poplar leaf growth and cellulose biosynthesis. The Plant Journal 33:1087−97

doi: 10.1046/j.1365-313X.2003.01695.x
[54]

Yu L, Li Q, Zhu Y, Afzal MS, Li L. 2018. An auxin-induced β-type endo-1,4-β-glucanase in poplar is involved in cell expansion and lateral root formation. Planta 247:1149−61

doi: 10.1007/s00425-018-2851-8
[55]

Yu L, Sun J, Li L. 2013. PtrCel9A6, an Endo-1,4-β-glucanase, is required for cell wall formation during xylem differentiation in Populus. Molecular Plant 6:1904−17

doi: 10.1093/mp/sst104
[56]

Zhao Y, Song D, Sun J, Li L. 2013. Populus endo-β-mannanase PtrMAN6 plays a role in coordinating cell wall remodeling with suppression of secondary wall thickening through generation of oligosaccharide signals. The Plant Journal 74:473−85

doi: 10.1111/tpj.12137
[57]

Pelloux J, Rustérucci C, Mellerowicz EJ. 2007. New insights into pectin methylesterase structure and function. Trends in Plant Science 12:267−77

doi: 10.1016/j.tplants.2007.04.001
[58]

Gou J, Miller LM, Hou G, Yu X, Chen X, et al. 2012. Acetylesterase-mediated deacetylation of pectin impairs cell elongation, pollen germination, and plant reproduction. Plant Cell 24:50−65

doi: 10.1105/tpc.111.092411
[59]

Siedlecka A, Wiklund S, Péronne MA, Micheli F, Leśniewska J, et al. 2008. Pectin methyl esterase inhibits intrusive and symplastic cell growth in developing wood cells of Populus. Plant Physiology 146:554−65

doi: 10.1104/pp.107.111963
[60]

Micheli F, Sundberg B, Goldberg R, Richard L. 2000. Radial distribution pattern of pectin methylesterases across the cambial region of hybrid aspen at activity and dormancy. Plant Physiology 124:191−200

doi: 10.1104/pp.124.1.191
[61]

Jeon HW, Cho JS, Park EJ, Han KH, Choi YI, et al. 2016. Developing xylem-preferential expression of PdGA20ox1, a gibberellin 20-oxidase 1 from Pinus densiflora, improves woody biomass production in a hybrid poplar. Plant Biotechnology Journal 14:1161−70

doi: 10.1111/pbi.12484
[62]

Eriksson ME, Israelsson M, Olsson O, Moritz T. 2000. Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nature Biotechnology 18:784−88

doi: 10.1038/77355
[63]

Wessels B, Seyfferth C, Escamez S, Vain T, Antos K, et al. 2019. An AP2/ERF transcription factor ERF139 coordinates xylem cell expansion and secondary cell wall deposition. New Phytologist 224:1585−99

doi: 10.1111/nph.15960
[64]

Vahala J, Felten J, Love J, Gorzsás A, Gerber L, et al. 2013. A genome-wide screen for ethylene-induced ethylene response factors (ERFs) in hybrid aspen stem identifies ERF genes that modify stem growth and wood properties. New Phytologist 200:511−22

doi: 10.1111/nph.12386
[65]

Seyfferth C, Wessels B, Jokipii-Lukkari S, Sundberg B, Delhomme N, et al. 2018. Ethylene-related gene expression networks in wood formation. Frontiers in Plant Science 9:272

doi: 10.3389/fpls.2018.00272
[66]

Hager A. 2003. Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: historical and new aspects. Journal of Plant Research 116:483−505

doi: 10.1007/s10265-003-0110-x
[67]

Meents MJ, Watanabe Y, Samuels AL. 2018. The cell biology of secondary cell wall biosynthesis. Annals of Botany 121:1107−25

doi: 10.1093/aob/mcy005
[68]

Zhong R, Lee C, Zhou J, McCarthy RL, Ye Z. 2008. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. The Plant Cell 20:2763−82

doi: 10.1105/tpc.108.061325
[69]

Zhong R, Ye ZH. 2014. Complexity of the transcriptional network controlling secondary wall biosynthesis. Plant Science 229:193−207

doi: 10.1016/j.plantsci.2014.09.009
[70]

Demura T, Fukuda H. 2007. Transcriptional regulation in wood formation. Trends in Plant Science 12:64−70

doi: 10.1016/j.tplants.2006.12.006
[71]

Zhu Y, Li L. 2021. Multi-Layered Regulation of Plant Cell Wall Thickening. Plant Cell Physiology 62:1867−73

doi: 10.1093/pcp/pcab152
[72]

Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M. 2005. The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. The Plant Cell 17:2993−3006

doi: 10.1105/tpc.105.036004
[73]

Tan T, Endo H, Sano R, Kurata T, Yamaguchi M, et al. 2018. Transcription Factors VND1-VND3 Contribute to Cotyledon Xylem Vessel Formation. Plant Physiology 176:773−89

doi: 10.1104/pp.17.00461
[74]

Zhou J, Zhong R, Ye Z. 2014. Arabidopsis NAC domain proteins, VND1 to VND5, are transcriptional regulators of secondary wall biosynthesis in vessels. PLoS One 9:e105726

doi: 10.1371/journal.pone.0105726
[75]

Zhong R, Lee C, Ye Z. 2010. Functional characterization of poplar wood-associated NAC domain transcription factors. Plant Physiology 152:1044−55

doi: 10.1104/pp.109.148270
[76]

Ye Z, Zhong R. 2015. Molecular control of wood formation in trees. Journal of Experimental Botany 66:4119−31

doi: 10.1093/jxb/erv081
[77]

Ohtani M, Nishikubo N, Xu B, Yamaguchi M, Mitsuda N, et al. 2011. A NAC domain protein family contributing to the regulation of wood formation in poplar. The Plant Journal 67:499−512

doi: 10.1111/j.1365-313X.2011.04614.x
[78]

Zhao Y, Sun J, Xu P, Zhang R, Li L. 2014. Intron-mediated alternative splicing of WOOD-ASSOCIATED NAC TRANSCRIPTION FACTOR1B regulates cell wall thickening during fiber development in Populus species. Plant Physiology 164:765−76

doi: 10.1104/pp.113.231134
[79]

Li Q, Lin Y, Sun Y, Song J, Chen H, et al. 2012. Splice variant of the SND1 transcription factor is a dominant negative of SND1 members and their regulation in Populus trichocarpa. PNAS 109:14699−704

doi: 10.1073/pnas.1212977109
[80]

Zhong R, Lee C, Ye Z. 2010. Evolutionary conservation of the transcriptional network regulating secondary cell wall biosynthesis. Trends in Plant Science 15:625−32

doi: 10.1016/j.tplants.2010.08.007
[81]

Zhong R, McCarthy RL, Lee C, Ye Z. 2011. Dissection of the transcriptional program regulating secondary wall biosynthesis during wood formation in poplar. Plant Physiology 157:1452−68

doi: 10.1104/pp.111.181354
[82]

Zhong R, Lee C, Ye Z. 2010. Global analysis of direct targets of secondary wall NAC master switches in Arabidopsis. Molecular Plant 3:1087−103

doi: 10.1093/mp/ssq062
[83]

McCarthy RL, Zhong RQ, Ye Z. 2009. MYB83 is a direct target of SND1 and acts redundantly with MYB46 in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant and Cell Physiology 50:1950−64

doi: 10.1093/pcp/pcp139
[84]

Zhong R, Richardson EA, Ye ZH. 2007. The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis. The Plant Cell 19:2776−92

doi: 10.1105/tpc.107.053678
[85]

McCarthy RL, Zhong R, Fowler S, Lyskowski D, Piyasena H, et al. 2010. The poplar MYB transcription factors, PtrMYB3 and PtrMYB20, are involved in the regulation of secondary wall biosynthesis. Plant and Cell Physiology 51:1084−90

doi: 10.1093/pcp/pcq064
[86]

Zhong R, McCarthy RL, Haghighat M, Ye Z. 2013. The poplar MYB master switches bind to the SMRE site and activate the secondary wall biosynthetic program during wood formation. PLoS One 8:e69219

doi: 10.1371/journal.pone.0069219
[87]

Goicoechea M, Lacombe E, Legay S, Mihaljevic S, Rech P, et al. 2005. EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. The Plant Journal 43:553−67

doi: 10.1111/j.1365-313X.2005.02480.x
[88]

Patzlaff A, McInnis S, Courtenay A, Surman C, Newman LJ, et al. 2003. Characterisation of a pine MYB that regulates lignification. The Plant Journal 36:743−54

doi: 10.1046/j.1365-313X.2003.01916.x
[89]

Wang S, Li E, Porth I, Chen J, Mansfield SD, et al. 2014. Regulation of secondary cell wall biosynthesis by poplar R2R3 MYB transcription factor PtrMYB152 in Arabidopsis. Scientific Reports 4:5054

doi: 10.1038/srep05054
[90]

Zhong R, Ye Z. 2009. Transcriptional regulation of lignin biosynthesis. Plant Signal Behav 4:1028−34

doi: 10.4161/psb.4.11.9875
[91]

Li C, Ma X, Yu H, Fu Y, Luo K. 2018. Ectopic expression of PtoMYB74 in poplar and arabidopsis promotes secondary cell wall formation. Frontiers in Plant Science 9:1262

doi: 10.3389/fpls.2018.01262
[92]

Xu C, Fu X, Liu R, Guo L, Ran L, et al. 2017. PtoMYB170 positively regulates lignin deposition during wood formation in poplar and confers drought tolerance in transgenic Arabidopsis. Tree Physiology 37:1713−26

doi: 10.1093/treephys/tpx093
[93]

Li C, Wang X, Ran L, Tian Q, Fan D, Luo K. 2015. PtoMYB92 is a transcriptional activator of the lignin biosynthetic pathway during secondary cell wall formation in Populus tomentosa. Plant & Cell Physiology 56:2436−46

doi: 10.1093/pcp/pcv157
[94]

Tian Q, Wang X, Li C, Lu W, Yang L, et al. 2013. Functional characterization of the poplar R2R3-MYB transcription factor PtoMYB216 involved in the regulation of lignin biosynthesis during wood formation. PLoS One 8:e76369

doi: 10.1371/journal.pone.0076369
[95]

Bomal C, Bedon F, Caron S, Mansfield SD, Levasseur C, et al. 2008. Involvement of Pinus taeda MYB1 and MYB8 in phenylpropanoid metabolism and secondary cell wall biogenesis: a comparativein planta analysis. Journal of Experimental Botany 59:3925−39

doi: 10.1093/jxb/ern234
[96]

Karpinska B, Karlsson M, Srivastava M, Stenberg A, Schrader J, et al. 2004. MYB transcription factors are differentially expressed and regulated during secondary vascular tissue development in hybrid aspen. Plant Molecular Biology 56:255−70

doi: 10.1007/s11103-004-3354-5
[97]

Tang X, Zhuang Y, Qi G, Wang D, Liu H, et al. 2015. Poplar PdMYB221 is involved in the direct and indirect regulation of secondary wall biosynthesis during wood formation. Scientific Reports 5:12240

doi: 10.1038/srep12240
[98]

Yang L, Zhao X, Ran L, Li C, Fan D, et al. 2017. PtoMYB156 is involved in negative regulation of phenylpropanoid metabolism and secondary cell wall biosynthesis during wood formation in poplar. Scientific Reports 7:41209

doi: 10.1038/srep41209
[99]

Jiao B, Zhao X, Lu W, Guo L, Luo K. 2019. The R2R3 MYB transcription factor MYB189 negatively regulates secondary cell wall biosynthesis in Populus. Tree Physiology 39:1187−200

doi: 10.1093/treephys/tpz040
[100]

Legay S, Sivadon P, Blervacq AS, Pavy N, Baghdady A, et al. 2010. EgMYB1, an R2R3 MYB transcription factor from eucalyptus negatively regulates secondary cell wall formation in Arabidopsis and poplar. New Phytologist 188:774−86

doi: 10.1111/j.1469-8137.2010.03432.x
[101]

Soler M, Plasencia A, Larbat R, Pouzet C, Jauneau A, et al. 2017. The Eucalyptus linker histone variant EgH1.3 cooperates with the transcription factor EgMYB1 to control lignin biosynthesis during wood formation. New Phytologist 213:287−99

doi: 10.1111/nph.14129
[102]

Gui J, Luo L, Zhong Y, Sun J, Umezawa T, et al. 2019. Phosphorylation of LTF1, an MYB transcription factor in populus, acts as a sensory switch regulating lignin biosynthesis in wood cells. Molecular Plant 12:1325−37

doi: 10.1016/j.molp.2019.05.008
[103]

Laubscher M, Brown K, Tonfack LB, Myburg AA, Mizrachi E, Hussey SG. 2018. Temporal analysis of Arabidopsis genes activated by Eucalyptus grandis NAC transcription factors associated with xylem fibre and vessel development. Scientific Reports 8:10983

doi: 10.1038/s41598-018-29278-w
[104]

Wang H, Tang R, Liu H, Chen H, Liu J, et al. 2013. Chimeric repressor of PtSND2 severely affects wood formation in transgenic Populus. Tree Physiology 33:878−86

doi: 10.1093/treephys/tpt058
[105]

Li E, Bhargava A, Qiang W, Friedmann MC, Forneris N, et al. 2012. The Class II KNOX gene KNAT7 negatively regulates secondary wall formation in Arabidopsis and is functionally conserved in Populus. New Phytologist 194:102−15

doi: 10.1111/j.1469-8137.2011.04016.x
[106]

Yang L, Zhao X, Yang F, Fan D, Jiang Y, et al. 2016. PtrWRKY19, a novel WRKY transcription factor, contributes to the regulation of pith secondary wall formation in Populus trichocarpa. Scientific Reports 6:18643

doi: 10.1038/srep18643
[107]

Timell TE. 1967. Recent progress in the chemistry of wood hemicelluloses. Wood Science and Technology 1:45−70

doi: 10.1007/BF00592255
[108]

Boerjan W, Ralph J, Baucher M. 2003. Lignin biosynthesis. Annual Review of Plant Biology 54:519−46

doi: 10.1146/annurev.arplant.54.031902.134938
[109]

Delmer DP. 1999. CELLULOSE BIOSYNTHESIS: Exciting Times for A Difficult Field of Study. Annual Review of Plant Physiology and Plant Molecular Biology 50:245−76

doi: 10.1146/annurev.arplant.50.1.245
[110]

Gardiner JC, Taylor NG, Turner SR. 2003. Control of cellulose synthase complex localization in developing xylem. The Plant Cell 15:1740−8

doi: 10.1105/tpc.012815
[111]

Suzuki S, Li L, Sun YH, Chiang VL. 2006. The cellulose synthase gene superfamily and biochemical functions of xylem-specific cellulose synthase-like genes in Populus trichocarpa. Plant Physiology 142:1233−45

doi: 10.1104/pp.106.086678
[112]

Song D, Shen J, Li L. 2010. Characterization of cellulose synthase complexes in Populus xylem differentiation. New Phytologist 187:777−90

doi: 10.1111/j.1469-8137.2010.03315.x
[113]

Xu W, Cheng H, Zhu S, Cheng J, Ji H, et al. 2021. Functional understanding of secondary cell wall cellulose synthases in Populus trichocarpa via the Cas9/gRNA-induced gene knockouts. New Phytologist 231:1478−95

doi: 10.1111/nph.17338
[114]

Xi W, Song D, Sun J, Shen J, Li L. 2017. Formation of wood secondary cell wall may involve two type cellulose synthase complexes in Populus. Plant Molecular Biology 93:419−29

doi: 10.1007/s11103-016-0570-8
[115]

Yu L, Chen H, Sun J, Li L. 2014. PtrKOR1 is required for secondary cell wall cellulose biosynthesis in Populus. Tree Physiology 34:1289−300

doi: 10.1093/treephys/tpu020
[116]

Coleman HD, Yan J, Mansfield SD. 2009. Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. PNAS 106:13118−23

doi: 10.1073/pnas.0900188106
[117]

Ruan Y, Llewellyn DJ, Furbank RT. 2003. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell 15:952−64

doi: 10.1105/tpc.010108
[118]

Gerber L, Zhang B, Roach M, Rende U, Gorzsás A, et al. 2014. Deficient sucrose synthase activity in developing wood does not specifically affect cellulose biosynthesis, but causes an overall decrease in cell wall polymers. New Phytologist 203:1220−30

doi: 10.1111/nph.12888
[119]

Rende U, Wang W, Gandla ML, Jönsson LJ, Niittylä T. 2017. Cytosolic invertase contributes to the supply of substrate for cellulose biosynthesis in developing wood. New Phytologist 214:796−807

doi: 10.1111/nph.14392
[120]

Simmons TJ, Mortimer JC, Bernardinelli OD, Pöppler AC, Brown SP, et al. 2016. Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR. Nature Communications 7:13902

doi: 10.1038/ncomms13902
[121]

Scheller HV, Ulvskov P. 2010. Hemicelluloses. Annual Review of Plant Biology 61:263−89

doi: 10.1146/annurev-arplant-042809-112315
[122]

Zhong R, Cui D, Ye Z. 2019. Secondary cell wall biosynthesis. New Phytologist 221:1703−23

doi: 10.1111/nph.15537
[123]

Brown DM, Zhang Z, Stephens E, Dupree P, Turner SR. 2009. Characterization of IRX10 and IRX10-like reveals an essential role in glucuronoxylan biosynthesis in Arabidopsis. The Plant Journal 57:732−46

doi: 10.1111/j.1365-313X.2008.03729.x
[124]

Brown DM, Goubet F, Wong VW, Goodacre R, Stephens E, et al. 2007. Comparison of five xylan synthesis mutants reveals new insight into the mechanisms of xylan synthesis. The Plant Journal 52:1154−68

doi: 10.1111/j.1365-313X.2007.03307.x
[125]

Keppler BD, Showalter AM. 2010. IRX14 and IRX14-LIKE, two glycosyl transferases involved in glucuronoxylan biosynthesis and drought tolerance in Arabidopsis. Molecular Plant 3:834−41

doi: 10.1093/mp/ssq028
[126]

Lee C, Teng Q, Huang WL, Zhong RQ, Ye ZH. 2010. The arabidopsis family GT43 glycosyltransferases form two functionally nonredundant groups essential for the elongation of glucuronoxylan backbone. Plant Physiology 153:526−41

doi: 10.1104/pp.110.155309
[127]

Wu AM, Hörnblad E, Voxeur A, Gerber L, Rihouey C, et al. 2010. Analysis of the arabidopsis IRX9/IRX9-L and IRX14/IRX14-L pairs of glycosyltransferase genes reveals critical contributions to biosynthesis of the hemicellulose glucuronoxylan. Plant Physiology 153:542−54

doi: 10.1104/pp.110.154971
[128]

Lee C, Teng Q, Zhong R, Ye Z. 2011. Molecular dissection of xylan biosynthesis during wood formation in poplar. Molecular Plant 4:730−47

doi: 10.1093/mp/ssr035
[129]

Lee C, Teng Q, Huang W, Zhong R, Ye Z. 2009. Down-regulation of PoGT47C expression in poplar results in a reduced glucuronoxylan content and an increased wood digestibility by cellulase. Plant and Cell Physiology 50:1075−89

doi: 10.1093/pcp/pcp060
[130]

Lee C, Teng Q, Huang W, Zhong R, Ye Z. 2009. The poplar GT8E and GT8F glycosyltransferases are functional orthologs of arabidopsis PARVUS involved in glucuronoxylan biosynthesis. Plant and Cell Physiology 50:1982−7

doi: 10.1093/pcp/pcp131
[131]

Lee C, Teng Q, Zhong R, Yuan Y, Haghighat M, Ye ZH. 2012. Three Arabidopsis DUF579 domain-containing GXM proteins are methyltransferases catalyzing 4-O-methylation of glucuronic acid on xylan. Plant and Cell Physiology 53:1934−49

doi: 10.1093/pcp/pcs138
[132]

Urbanowicz BR, Peña MJ, Ratnaparkhe S, Avci U, Backe J, et al. 2012. 4-O-methylation of glucuronic acid in Arabidopsis glucuronoxylan is catalyzed by a domain of unknown function family 579 protein. PNAS 109:14253−58

doi: 10.1073/pnas.1208097109
[133]

Yuan Y, Teng Q, Zhong R, Ye Z. 2014. Identification and biochemical characterization of four wood-associated glucuronoxylan methyltransferases in Populus. PLoS One 9:e87370

doi: 10.1371/journal.pone.0087370
[134]

Song D, Gui J, Liu C, Sun J, Li L. 2016. Suppression of PtrDUF579-3 expression causes structural changes of the glucuronoxylan in Populus. Frontiers in Plant Science 7:493

doi: 10.3389/fpls.2016.00493
[135]

Song D, Sun J, Li L. 2014. Diverse roles of PtrDUF579 proteins in Populus and PtrDUF579-1 function in vascular cambium proliferation during secondary growth. Plant Molecular Biology 85:601−12

doi: 10.1007/s11103-014-0206-9
[136]

Zhong R, Cui D, Ye Z. 2018. A group of Populus trichocarpa DUF231 proteins exhibit differential O-acetyltransferase activities toward xylan. Plos One 13:e0194532

doi: 10.1371/journal.pone.0194532
[137]

Pawar PMA, Ratke C, Balasubramanian VK, Chong SL, Gandla ML, et al. 2017. Downregulation of RWA genes in hybrid aspen affects xylan acetylation and wood saccharification. New Phytologist 214:1491−505

doi: 10.1111/nph.14489
[138]

Liepman AH, Nairn CJ, Willats WGT, Sørensen I, Roberts AW, et al. 2007. Functional genomic analysis supports conservation of function among cellulose synthase-like a gene family members and suggests diverse roles of mannans in plants. Plant Physiology 143:1881−93

doi: 10.1104/pp.106.093989
[139]

Shi R, Sun YH, Li Q, Heber S, Sederoff R, et al. 2010. Towards a systems approach for lignin biosynthesis in Populus trichocarpa: transcript abundance and specificity of the monolignol biosynthetic genes. Plant and Cell Physiology 51:144−63

doi: 10.1093/pcp/pcp175
[140]

Wang JP, Matthews ML, Williams CM, Shi R, Yang CM, et al. 2018. Improving wood properties for wood utilization through multi-omics integration in lignin biosynthesis. Nature Communications 9:1579

doi: 10.1038/s41467-018-03863-z
[141]

de Lyra Soriano Saleme M, Cesarino I, Vargas L, Kim H, Vanholme R, et al. 2017. Silencing CAFFEOYL SHIKIMATE ESTERASE affects lignification and improves saccharification in poplar. Plant Physiology 175:1040−57

doi: 10.1104/pp.17.00920
[142]

Bonawitz ND, Chapple C. 2010. The genetics of lignin biosynthesis: connecting genotype to phenotype. Annual Review of Genetics 44:337−63

doi: 10.1146/annurev-genet-102209-163508
[143]

Lu S, Li Q, Wei H, Chang M, Tunlaya-Anukit S, et al. 2013. Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa. PNAS 110:10848−53

doi: 10.1073/pnas.1308936110
[144]

Shigeto J, Itoh Y, Hirao S, Ohira K, Fujita K, et al. 2015. Simultaneously disrupting AtPrx2, AtPrx25 and AtPrx71 alters lignin content and structure in Arabidopsis stem. Journal of Integrative Plant Biology 57:349−56

doi: 10.1111/jipb.12334
[145]

Li Y, Kajita S, Kawai S, Katayama Y, Morohoshi N. 2003. Down-regulation of an anionic peroxidase in transgenic aspen and its effect on lignin characteristics. Journal of Plant Research 116:175−82

doi: 10.1007/s10265-003-0087-5
[146]

Kumar M, Campbell L, Turner S. 2016. Secondary cell walls: biosynthesis and manipulation. Journal of Experimental Botany 67:515−31

doi: 10.1093/jxb/erv533
[147]

Pauly M, Keegstra K. 2010. Plant cell wall polymers as precursors for biofuels. Current Opinion in Plant Biology 13:304−11

doi: 10.1016/j.pbi.2009.12.009
[148]

Vanholme R, Morreel K, Ralph J, Boerjan W. 2008. Lignin engineering. Current Opinion in Plant Biology 11:278−85

doi: 10.1016/j.pbi.2008.03.005
[149]

Li L, Zhou Y, Cheng X, Sun J, Marita JM, et al. 2003. Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. PNAS 100:4939−44

doi: 10.1073/pnas.0831166100
[150]

Hu WJ, Harding SA, Lung J, Popko JL, Ralph J, et al. 1999. Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nature Biotechnology 17:808−12

doi: 10.1038/11758
[151]

Chanoca A, de Vries L, Boerjan W. 2019. Lignin Engineering in Forest Trees. Frontiers in Plant Science 10:912

doi: 10.3389/fpls.2019.00912
[152]

Voelker SL, Lachenbruch B, Meinzer FC, Jourdes M, Ki CY, et al. 2010. Antisense down-regulation of 4CL expression alters lignification, tree growth, and saccharification potential of field-grown poplar. Plant Physiology 154:874−86

doi: 10.1104/pp.110.159269
[153]

Gui JS, Lam PY, Tobimatsu Y, Sun JY, Huang C, et al. 2020. Fibre-specific regulation of lignin biosynthesis improves biomass quality in Populus. New Phytologist 226:1074−87

doi: 10.1111/nph.16411
[154]

Cao S, Huang C, Luo L, Zheng S, Zhong Y, et al. 2020. Cell-specific suppression of 4-Coumarate-CoA ligase gene reveals differential effect of lignin on cell physiological function inPopulus. Frontiers in Plant Science 11:589729

doi: 10.3389/fpls.2020.589729
[155]

De Meester B, Vanholme R, de Vries L, Wouters M, Van Doorsselaere J, Boerjan W. 2021. Vessel- and ray-specific monolignol biosynthesis as an approach to engineer fiber-hypolignification and enhanced saccharification in poplar. The Plant Journal 108:752−65

doi: 10.1111/tpj.15468
[156]

van Doorn WG. 2011. Classes of programmed cell death in plants, compared to those in animals. Journal of Experimental Botany 62:4749−61

doi: 10.1093/jxb/err196
[157]

Courtois-Moreau CL, Pesquet E, Sjödin A, Muñiz L, Bollhöner B, et al. 2009. A unique program for cell death in xylem fibers of Populus stem. Plant Journal 58:260−74

doi: 10.1111/j.1365-313X.2008.03777.x
[158]

Han J, Lin W, Oda Y, Cui K, Fukuda H, et al. 2012. The proteasome is responsible for caspase-3-like activity during xylem development. The Plant Journal 72:129−41

doi: 10.1111/j.1365-313X.2012.05070.x
[159]

Bollhöner B, Jokipii-Lukkari S, Bygdell J, Stael S, Adriasola M, et al. 2018. The function of two type II metacaspases in woody tissues of Populus trees. New Phytologist 217:1551−65

doi: 10.1111/nph.14945
[160]

Chen H, Pang Y, Zeng J, Ding Q, Yin S, et al. 2012. The Ca2+-dependent DNases are involved in secondary xylem development in Eucommia ulmoides. Journal of Integrative Plant Biology 54:456−70

doi: 10.1111/j.1744-7909.2012.01134.x
[161]

Stewart CM. 1966. Excretion and Heartwood Formation in Living Trees. Science 153:1068−74

doi: 10.1126/science.153.3740.1068
[162]

Spicer R. 2005. Senescence in Secondary Xylem: Heartwood Formation as an Active Developmental Program. In Vascular Transport in Plants, eds. Holbrook NM, Zwieniecki MA. UK: Academic Press. pp. 457−75 https://doi.org/10.1016/B978-012088457-5/50024-1

[163]

Li H, Dai X, Huang X, Xu M, Wang Q, et al. 2021. Single-cell RNA sequencing reveals a high-resolution cell atlas of xylem in Populus. Journal of Integrative Plant Biology 63:1906−21

doi: 10.1111/jipb.13159