[1]
|
Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. 1998. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281:237−40 doi: 10.1126/science.281.5374.237
CrossRef Google Scholar
|
[2]
|
Li L, Lu S, Chiang V. 2006. A genomic and molecular view of wood formation. Critical Reviews in Plant Sciences 25:215−33 doi: 10.1080/07352680600611519
CrossRef Google Scholar
|
[3]
|
Plomion C, Leprovost G, Stokes A. 2001. Wood Formation in Trees. Plant Physiology 127:1513−23 doi: 10.1104/pp.010816
CrossRef Google Scholar
|
[4]
|
Smetana O, Mäkilä R, Lyu M, Amiryousefi A, Sánchez Rodríguez F, et al. 2019. High levels of auxin signalling define the stem-cell organizer of the vascular cambium. Nature 565:485−89 doi: 10.1038/s41586-018-0837-0
CrossRef Google Scholar
|
[5]
|
Tuominen H, Puech L, Fink S, Sundberg B. 1997. A radial concentration gradient of indole-3-acetic acid is related to secondary xylem development in hybrid aspen. Plant Physiology 115:577−85 doi: 10.1104/pp.115.2.577
CrossRef Google Scholar
|
[6]
|
Immanen J, Nieminen K, Smolander OP, Kojima M, Alonso Serra J, et al. 2016. Cytokinin and auxin display distinct but interconnected distribution and signaling profiles to stimulate cambial activity. Current Biology 26:1990−97 doi: 10.1016/j.cub.2016.05.053
CrossRef Google Scholar
|
[7]
|
Brackmann K, Qi J, Gebert M, Jouannet V, Schlamp T, et al. 2018. Spatial specificity of auxin responses coordinates wood formation. Nature Communications 9:875 doi: 10.1038/s41467-018-03256-2
CrossRef Google Scholar
|
[8]
|
Zheng S, He J, Lin Z, Zhu Y, Sun J, et al. 2021. Two MADS-box genes regulate vascular cambium activity and secondary growth by modulating auxin homeostasis in Populus. Plant Communications 2:100134 doi: 10.1016/j.xplc.2020.100134
CrossRef Google Scholar
|
[9]
|
Moyle R, Schrader J, Stenberg A, Olsson O, Saxena S, et al. 2002. Environmental and auxin regulation of wood formation involves members of the Aux/IAA gene family in hybrid aspen. The Plant Journal 31:675−85 doi: 10.1046/j.1365-313X.2002.01386.x
CrossRef Google Scholar
|
[10]
|
Nilsson J, Karlberg A, Antti H, Lopez-Vernaza M, Mellerowicz E, et al. 2008. Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen. The Plant Cell 20:843−55 doi: 10.1105/tpc.107.055798
CrossRef Google Scholar
|
[11]
|
Xu C, Shen Y, He F, Fu X, Yu H, et al. 2019. Auxin-mediated Aux/IAA-ARF-HB signaling cascade regulates secondary xylem development in Populus. New Phytologist 222:752−67 doi: 10.1111/nph.15658
CrossRef Google Scholar
|
[12]
|
Kalluri UC, Difazio SP, Brunner AM, Tuskan GA. 2007. Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa. BMC Plant Biology 7:59 doi: 10.1186/1471-2229-7-59
CrossRef Google Scholar
|
[13]
|
Nieminen K, Immanen J, Laxell M, Kauppinen L, Tarkowski P, et al. 2008. Cytokinin signaling regulates cambial development in poplar. PNAS 105:20032−37 doi: 10.1073/pnas.0805617106
CrossRef Google Scholar
|
[14]
|
Fu X, Su H, Liu S, Du X, Xu C, Luo K. 2021. Cytokinin signaling localized in phloem noncell-autonomously regulates cambial activity during secondary growth of Populus stems. New Phytologist 230:1476−88 doi: 10.1111/nph.17255
CrossRef Google Scholar
|
[15]
|
Kim SK, Abe H, Little CHA, Pharis RP. 1990. Identification of 2 Brassinosteroids from the Cambial Region of Scots Pine (Pinus-Silverstris) by Gas-Chromatography Mass-Spectrometry, after Detection Using a Dwarf Rice Lamina Inclination Bioassay. Plant Physiology 94:1709−13 doi: 10.1104/pp.94.4.1709
CrossRef Google Scholar
|
[16]
|
Du J, Gerttula S, Li Z, Zhao S, Liu Y, et al. 2020. Brassinosteroid regulation of wood formation in poplar. New Phytologist 225:1516−30 doi: 10.1111/nph.15936
CrossRef Google Scholar
|
[17]
|
Junghans U, Langenfeld-Heyser R, Polle A, Teichmann T. 2004. Effect of auxin transport inhibitors and ethylene on the wood anatomy of poplar. Plant Biology 6:22−29 doi: 10.1055/s-2003-44712
CrossRef Google Scholar
|
[18]
|
Love J, Björklund S, Vahala J, Hertzberg M, Kangasjärvi J, et al. 2009. Ethylene is an endogenous stimulator of cell division in the cambial meristem of Populus. PNAS 106:5984−89 doi: 10.1073/pnas.0811660106
CrossRef Google Scholar
|
[19]
|
Mauriat M, Moritz T. 2009. Analyses of GA20ox- and GID1-over-expressing aspen suggest that gibberellins play two distinct roles in wood formation. The Plant Journal 58:989−1003 doi: 10.1111/j.1365-313X.2009.03836.x
CrossRef Google Scholar
|
[20]
|
Arend M, Fromm J. 2013. Concomitant analysis of cambial abscisic acid and cambial growth activity in poplar. Trees 27:1271−76 doi: 10.1007/s00468-013-0875-z
CrossRef Google Scholar
|
[21]
|
Fletcher JC. 2020. Recent Advances in Arabidopsis CLE Peptide Signaling. Trends in Plant Science 25:1005−16 doi: 10.1016/j.tplants.2020.04.014
CrossRef Google Scholar
|
[22]
|
Jun J, Fiume E, Roeder AHK, Meng L, Sharma VK, et al. 2010. Comprehensive analysis of CLE polypeptide signaling gene expression and overexpression activity in Arabidopsis. Plant Physiology 154:1721−36 doi: 10.1104/pp.110.163683
CrossRef Google Scholar
|
[23]
|
Etchells JP, Mishra LS, Kumar M, Campbell L, Turner SR. 2015. Wood formation in trees is increased by manipulating PXY-regulated cell division. Current Biology 25:1050−55 doi: 10.1016/j.cub.2015.02.023
CrossRef Google Scholar
|
[24]
|
Hirakawa Y, Shinohara H, Kondo Y, Inoue A, Nakanomyo I, et al. 2008. Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. PNAS 105:15208−13 doi: 10.1073/pnas.0808444105
CrossRef Google Scholar
|
[25]
|
Kucukoglu M, Nilsson J, Zheng B, Chaabouni S, Nilsson O. 2017. WUSCHEL-RELATED HOMEOBOX4 (WOX4)-like genes regulate cambial cell division activity and secondary growth in Populus trees. New Phytologist 215:642−57 doi: 10.1111/nph.14631
CrossRef Google Scholar
|
[26]
|
Zhu Y, Song D, Zhang R, Luo L, Cao S, et al. 2020. A xylem-produced peptide PtrCLE20 inhibits vascular cambium activity in Populus. Plant Biotechnology Journal 18:195−206 doi: 10.1111/pbi.13187
CrossRef Google Scholar
|
[27]
|
Kucukoglu M, Chaabouni S, Zheng B, Mähönen AP, Helariutta Y, et al. 2020. Peptide encoding Populus CLV3/ESR-RELATED 47 (PttCLE47) promotes cambial development and secondary xylem formation in hybrid aspen. New Phytologist 226:75−85 doi: 10.1111/nph.16331
CrossRef Google Scholar
|
[28]
|
Whitford R, Fernandez A, De Groodt R, Ortega E, Hilson P. 2008. Plant CLE peptides from two distinct functional classes synergistically induce division of vascular cells. PNAS 105:18625−30 doi: 10.1073/pnas.0809395105
CrossRef Google Scholar
|
[29]
|
Etchells JP, Turner SR. 2010. The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development 137:767−74 doi: 10.1242/dev.044941
CrossRef Google Scholar
|
[30]
|
Sundell D, Street NR, Kumar M, Mellerowicz EJ, Kucukoglu M, et al. 2017. AspWood: high-spatial-resolution transcriptome profiles reveal uncharacterized modularity of wood formation in Populus tremula. The Plant Cell 29:1585−604 doi: 10.1105/tpc.17.00153
CrossRef Google Scholar
|
[31]
|
Schrader J, Nilsson J, Mellerowicz E, Berglund A, Nilsson P, et al. 2004. A high-resolution transcript profile across the wood-forming meristem of poplar identifies potential regulators of cambial stem cell identity. The Plant Cell 16:2278−92 doi: 10.1105/tpc.104.024190
CrossRef Google Scholar
|
[32]
|
Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE. 2005. Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. The Plant Cell 17:61−76 doi: 10.1105/tpc.104.026161
CrossRef Google Scholar
|
[33]
|
Izhaki A, Bowman JL. 2007. KANADI and class III HD-zip gene families regulate embryo patterning and modulate auxin flow during embryogenesis in Arabidopsis. The Plant Cell 19:495−508 doi: 10.1105/tpc.106.047472
CrossRef Google Scholar
|
[34]
|
McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, et al. 2001. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411:709−13 doi: 10.1038/35079635
CrossRef Google Scholar
|
[35]
|
Zhu Y, Song D, Sun J, Wang X, Li L. 2013. PtrHB7, a class III HD-zip gene, plays a critical role in regulation of vascular cambium differentiation in Populus. Molecular Plant 6:1331−43 doi: 10.1093/mp/sss164
CrossRef Google Scholar
|
[36]
|
Robischon M, Du J, Miura E, Groover A. 2011. The Populus class III HD ZIP, popREVOLUTA, influences cambium initiation and patterning of woody stems. Plant Physiology 155:1214−25 doi: 10.1104/pp.110.167007
CrossRef Google Scholar
|
[37]
|
Du J, Miura E, Robischon M, Martinez C, Groover A. 2011. The Populus Class III HD ZIP transcription factor POPCORONA affects cell differentiation during secondary growth of woody stems. PLoS One 6:e17458 doi: 10.1371/journal.pone.0017458
CrossRef Google Scholar
|
[38]
|
Zhu Y, Song D, Xu P, Sun J, Li L. 2018. A HD-ZIP III gene, PtrHB4, is required for interfascicular cambium development in Populus. Plant Biotechnology Journal 16:808−17 doi: 10.1111/pbi.12830
CrossRef Google Scholar
|
[39]
|
Tang X, Wang D, Liu Y, Lu M, Zhuang Y, et al. 2020. Dual regulation of xylem formation by an auxin-mediated PaC3H17-PaMYB199 module in Populus. New Phytologist 225:1545−61 doi: 10.1111/nph.16244
CrossRef Google Scholar
|
[40]
|
McNeil M, Darvill AG, Fry SC, Albersheim P. 1984. Structure and Function of the Primary-Cell Walls of Plants. Annual Review of Biochemistry 53:625−63 doi: 10.1146/annurev.bi.53.070184.003205
CrossRef Google Scholar
|
[41]
|
Carpita NC, Gibeaut DM. 1993. Structural models of primary-cell walls in flowering plants - consistency of molecular-structure with the physical-properties of the walls during growth. The Plant Journal 3:1−30 doi: 10.1111/j.1365-313X.1993.tb00007.x
CrossRef Google Scholar
|
[42]
|
Mellerowicz EJ, Sundberg B. 2008. Wood cell walls: biosynthesis, developmental dynamics and their implications for wood properties. Current Opinion in Plant Biology 11:293−300 doi: 10.1016/j.pbi.2008.03.003
CrossRef Google Scholar
|
[43]
|
Sampedro J, Cosgrove DJ. 2005. The expansin superfamily. Genome Biology 6:242 doi: 10.1186/gb-2005-6-12-242
CrossRef Google Scholar
|
[44]
|
McQueen-Mason S, Durachko DM, Cosgrove DJ. 1992. Two Endogenous Proteins That Induce Cell-Wall Extension in Plants. The Plant Cell 4:1425−33 doi: 10.1105/tpc.4.11.1425
CrossRef Google Scholar
|
[45]
|
Yennawar NH, Li L, Dudzinski DM, Tabuchi A, Cosgrove DJ. 2006. Crystal structure and activities of EXPB1 (Zea m 1), a β-expansin and group-1 pollen allergen from maize. PNAS 103:14664−71 doi: 10.1073/pnas.0605979103
CrossRef Google Scholar
|
[46]
|
Yuan S, Wu Y, Cosgrove DJ. 2001. A fungal endoglucanase with plant cell wall extension activity. Plant Physiology 127:324−33 doi: 10.1104/pp.127.1.324
CrossRef Google Scholar
|
[47]
|
Gray-Mitsumune M, Mellerowicz EJ, Abe H, Schrader J, Winzéll A, et al. 2004. Expansins abundant in secondary xylem belong to subgroup A of the α-expansin gene family. Plant Physiology 135:1552−64 doi: 10.1104/pp.104.039321
CrossRef Google Scholar
|
[48]
|
Gray-Mitsumune M, Blomquist K, McQueen-Mason S, Teeri TT, Sundberg B, et al. 2008. Ectopic expression of a wood-abundant expansin PttEXPA1 promotes cell expansion in primary and secondary tissues in aspen. Plant Biotechnology Journal 6:62−72 doi: 10.1111/j.1467-7652.2007.00295.x
CrossRef Google Scholar
|
[49]
|
Nishitani K, Tominaga R. 1992. Endo-xyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule. Journal of Biological Chemistry 267:21058−64 doi: 10.1016/S0021-9258(19)36797-3
CrossRef Google Scholar
|
[50]
|
Nishikubo N, Takahashi J, Roos AA, Derba-Maceluch M, Piens K, et al. 2011. Xyloglucan endo-transglycosylase-mediated xyloglucan rearrangements in developing wood of hybrid aspen. Plant Physiology 155:399−413 doi: 10.1104/pp.110.166934
CrossRef Google Scholar
|
[51]
|
Nishikubo N, Awano T, Banasiak A, Bourquin V, Ibatullin F, et al. 2007. Xyloglucan endo-transglycosylase (XET) functions in gelatinous layers of tension wood fibers in poplar—a glimpse into the mechanism of the balancing act of trees. Plant and Cell Physiology 48:843−55 doi: 10.1093/pcp/pcm055
CrossRef Google Scholar
|
[52]
|
Trainotti L, Spolaore S, Pavanello A, Baldan B, Casadoro G. 1999. A novel E-type endo-β-1,4-glucanase with a putative cellulose-binding domain is highly expressed in ripening strawberry fruits. Plant Molecular Biology 40:323−32 doi: 10.1023/A:1006299821980
CrossRef Google Scholar
|
[53]
|
Ohmiya Y, Nakai T, Park YW, Aoyama T, Oka A, et al. 2003. The role of PopCel1 and PopCel2 in poplar leaf growth and cellulose biosynthesis. The Plant Journal 33:1087−97 doi: 10.1046/j.1365-313X.2003.01695.x
CrossRef Google Scholar
|
[54]
|
Yu L, Li Q, Zhu Y, Afzal MS, Li L. 2018. An auxin-induced β-type endo-1,4-β-glucanase in poplar is involved in cell expansion and lateral root formation. Planta 247:1149−61 doi: 10.1007/s00425-018-2851-8
CrossRef Google Scholar
|
[55]
|
Yu L, Sun J, Li L. 2013. PtrCel9A6, an Endo-1,4-β-glucanase, is required for cell wall formation during xylem differentiation in Populus. Molecular Plant 6:1904−17 doi: 10.1093/mp/sst104
CrossRef Google Scholar
|
[56]
|
Zhao Y, Song D, Sun J, Li L. 2013. Populus endo-β-mannanase PtrMAN6 plays a role in coordinating cell wall remodeling with suppression of secondary wall thickening through generation of oligosaccharide signals. The Plant Journal 74:473−85 doi: 10.1111/tpj.12137
CrossRef Google Scholar
|
[57]
|
Pelloux J, Rustérucci C, Mellerowicz EJ. 2007. New insights into pectin methylesterase structure and function. Trends in Plant Science 12:267−77 doi: 10.1016/j.tplants.2007.04.001
CrossRef Google Scholar
|
[58]
|
Gou J, Miller LM, Hou G, Yu X, Chen X, et al. 2012. Acetylesterase-mediated deacetylation of pectin impairs cell elongation, pollen germination, and plant reproduction. Plant Cell 24:50−65 doi: 10.1105/tpc.111.092411
CrossRef Google Scholar
|
[59]
|
Siedlecka A, Wiklund S, Péronne MA, Micheli F, Leśniewska J, et al. 2008. Pectin methyl esterase inhibits intrusive and symplastic cell growth in developing wood cells of Populus. Plant Physiology 146:554−65 doi: 10.1104/pp.107.111963
CrossRef Google Scholar
|
[60]
|
Micheli F, Sundberg B, Goldberg R, Richard L. 2000. Radial distribution pattern of pectin methylesterases across the cambial region of hybrid aspen at activity and dormancy. Plant Physiology 124:191−200 doi: 10.1104/pp.124.1.191
CrossRef Google Scholar
|
[61]
|
Jeon HW, Cho JS, Park EJ, Han KH, Choi YI, et al. 2016. Developing xylem-preferential expression of PdGA20ox1, a gibberellin 20-oxidase 1 from Pinus densiflora, improves woody biomass production in a hybrid poplar. Plant Biotechnology Journal 14:1161−70 doi: 10.1111/pbi.12484
CrossRef Google Scholar
|
[62]
|
Eriksson ME, Israelsson M, Olsson O, Moritz T. 2000. Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nature Biotechnology 18:784−88 doi: 10.1038/77355
CrossRef Google Scholar
|
[63]
|
Wessels B, Seyfferth C, Escamez S, Vain T, Antos K, et al. 2019. An AP2/ERF transcription factor ERF139 coordinates xylem cell expansion and secondary cell wall deposition. New Phytologist 224:1585−99 doi: 10.1111/nph.15960
CrossRef Google Scholar
|
[64]
|
Vahala J, Felten J, Love J, Gorzsás A, Gerber L, et al. 2013. A genome-wide screen for ethylene-induced ethylene response factors (ERFs) in hybrid aspen stem identifies ERF genes that modify stem growth and wood properties. New Phytologist 200:511−22 doi: 10.1111/nph.12386
CrossRef Google Scholar
|
[65]
|
Seyfferth C, Wessels B, Jokipii-Lukkari S, Sundberg B, Delhomme N, et al. 2018. Ethylene-related gene expression networks in wood formation. Frontiers in Plant Science 9:272 doi: 10.3389/fpls.2018.00272
CrossRef Google Scholar
|
[66]
|
Hager A. 2003. Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: historical and new aspects. Journal of Plant Research 116:483−505 doi: 10.1007/s10265-003-0110-x
CrossRef Google Scholar
|
[67]
|
Meents MJ, Watanabe Y, Samuels AL. 2018. The cell biology of secondary cell wall biosynthesis. Annals of Botany 121:1107−25 doi: 10.1093/aob/mcy005
CrossRef Google Scholar
|
[68]
|
Zhong R, Lee C, Zhou J, McCarthy RL, Ye Z. 2008. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. The Plant Cell 20:2763−82 doi: 10.1105/tpc.108.061325
CrossRef Google Scholar
|
[69]
|
Zhong R, Ye ZH. 2014. Complexity of the transcriptional network controlling secondary wall biosynthesis. Plant Science 229:193−207 doi: 10.1016/j.plantsci.2014.09.009
CrossRef Google Scholar
|
[70]
|
Demura T, Fukuda H. 2007. Transcriptional regulation in wood formation. Trends in Plant Science 12:64−70 doi: 10.1016/j.tplants.2006.12.006
CrossRef Google Scholar
|
[71]
|
Zhu Y, Li L. 2021. Multi-Layered Regulation of Plant Cell Wall Thickening. Plant Cell Physiology 62:1867−73 doi: 10.1093/pcp/pcab152
CrossRef Google Scholar
|
[72]
|
Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M. 2005. The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. The Plant Cell 17:2993−3006 doi: 10.1105/tpc.105.036004
CrossRef Google Scholar
|
[73]
|
Tan T, Endo H, Sano R, Kurata T, Yamaguchi M, et al. 2018. Transcription Factors VND1-VND3 Contribute to Cotyledon Xylem Vessel Formation. Plant Physiology 176:773−89 doi: 10.1104/pp.17.00461
CrossRef Google Scholar
|
[74]
|
Zhou J, Zhong R, Ye Z. 2014. Arabidopsis NAC domain proteins, VND1 to VND5, are transcriptional regulators of secondary wall biosynthesis in vessels. PLoS One 9:e105726 doi: 10.1371/journal.pone.0105726
CrossRef Google Scholar
|
[75]
|
Zhong R, Lee C, Ye Z. 2010. Functional characterization of poplar wood-associated NAC domain transcription factors. Plant Physiology 152:1044−55 doi: 10.1104/pp.109.148270
CrossRef Google Scholar
|
[76]
|
Ye Z, Zhong R. 2015. Molecular control of wood formation in trees. Journal of Experimental Botany 66:4119−31 doi: 10.1093/jxb/erv081
CrossRef Google Scholar
|
[77]
|
Ohtani M, Nishikubo N, Xu B, Yamaguchi M, Mitsuda N, et al. 2011. A NAC domain protein family contributing to the regulation of wood formation in poplar. The Plant Journal 67:499−512 doi: 10.1111/j.1365-313X.2011.04614.x
CrossRef Google Scholar
|
[78]
|
Zhao Y, Sun J, Xu P, Zhang R, Li L. 2014. Intron-mediated alternative splicing of WOOD-ASSOCIATED NAC TRANSCRIPTION FACTOR1B regulates cell wall thickening during fiber development in Populus species. Plant Physiology 164:765−76 doi: 10.1104/pp.113.231134
CrossRef Google Scholar
|
[79]
|
Li Q, Lin Y, Sun Y, Song J, Chen H, et al. 2012. Splice variant of the SND1 transcription factor is a dominant negative of SND1 members and their regulation in Populus trichocarpa. PNAS 109:14699−704 doi: 10.1073/pnas.1212977109
CrossRef Google Scholar
|
[80]
|
Zhong R, Lee C, Ye Z. 2010. Evolutionary conservation of the transcriptional network regulating secondary cell wall biosynthesis. Trends in Plant Science 15:625−32 doi: 10.1016/j.tplants.2010.08.007
CrossRef Google Scholar
|
[81]
|
Zhong R, McCarthy RL, Lee C, Ye Z. 2011. Dissection of the transcriptional program regulating secondary wall biosynthesis during wood formation in poplar. Plant Physiology 157:1452−68 doi: 10.1104/pp.111.181354
CrossRef Google Scholar
|
[82]
|
Zhong R, Lee C, Ye Z. 2010. Global analysis of direct targets of secondary wall NAC master switches in Arabidopsis. Molecular Plant 3:1087−103 doi: 10.1093/mp/ssq062
CrossRef Google Scholar
|
[83]
|
McCarthy RL, Zhong RQ, Ye Z. 2009. MYB83 is a direct target of SND1 and acts redundantly with MYB46 in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant and Cell Physiology 50:1950−64 doi: 10.1093/pcp/pcp139
CrossRef Google Scholar
|
[84]
|
Zhong R, Richardson EA, Ye ZH. 2007. The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis. The Plant Cell 19:2776−92 doi: 10.1105/tpc.107.053678
CrossRef Google Scholar
|
[85]
|
McCarthy RL, Zhong R, Fowler S, Lyskowski D, Piyasena H, et al. 2010. The poplar MYB transcription factors, PtrMYB3 and PtrMYB20, are involved in the regulation of secondary wall biosynthesis. Plant and Cell Physiology 51:1084−90 doi: 10.1093/pcp/pcq064
CrossRef Google Scholar
|
[86]
|
Zhong R, McCarthy RL, Haghighat M, Ye Z. 2013. The poplar MYB master switches bind to the SMRE site and activate the secondary wall biosynthetic program during wood formation. PLoS One 8:e69219 doi: 10.1371/journal.pone.0069219
CrossRef Google Scholar
|
[87]
|
Goicoechea M, Lacombe E, Legay S, Mihaljevic S, Rech P, et al. 2005. EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. The Plant Journal 43:553−67 doi: 10.1111/j.1365-313X.2005.02480.x
CrossRef Google Scholar
|
[88]
|
Patzlaff A, McInnis S, Courtenay A, Surman C, Newman LJ, et al. 2003. Characterisation of a pine MYB that regulates lignification. The Plant Journal 36:743−54 doi: 10.1046/j.1365-313X.2003.01916.x
CrossRef Google Scholar
|
[89]
|
Wang S, Li E, Porth I, Chen J, Mansfield SD, et al. 2014. Regulation of secondary cell wall biosynthesis by poplar R2R3 MYB transcription factor PtrMYB152 in Arabidopsis. Scientific Reports 4:5054 doi: 10.1038/srep05054
CrossRef Google Scholar
|
[90]
|
Zhong R, Ye Z. 2009. Transcriptional regulation of lignin biosynthesis. Plant Signal Behav 4:1028−34 doi: 10.4161/psb.4.11.9875
CrossRef Google Scholar
|
[91]
|
Li C, Ma X, Yu H, Fu Y, Luo K. 2018. Ectopic expression of PtoMYB74 in poplar and arabidopsis promotes secondary cell wall formation. Frontiers in Plant Science 9:1262 doi: 10.3389/fpls.2018.01262
CrossRef Google Scholar
|
[92]
|
Xu C, Fu X, Liu R, Guo L, Ran L, et al. 2017. PtoMYB170 positively regulates lignin deposition during wood formation in poplar and confers drought tolerance in transgenic Arabidopsis. Tree Physiology 37:1713−26 doi: 10.1093/treephys/tpx093
CrossRef Google Scholar
|
[93]
|
Li C, Wang X, Ran L, Tian Q, Fan D, Luo K. 2015. PtoMYB92 is a transcriptional activator of the lignin biosynthetic pathway during secondary cell wall formation in Populus tomentosa. Plant & Cell Physiology 56:2436−46 doi: 10.1093/pcp/pcv157
CrossRef Google Scholar
|
[94]
|
Tian Q, Wang X, Li C, Lu W, Yang L, et al. 2013. Functional characterization of the poplar R2R3-MYB transcription factor PtoMYB216 involved in the regulation of lignin biosynthesis during wood formation. PLoS One 8:e76369 doi: 10.1371/journal.pone.0076369
CrossRef Google Scholar
|
[95]
|
Bomal C, Bedon F, Caron S, Mansfield SD, Levasseur C, et al. 2008. Involvement of Pinus taeda MYB1 and MYB8 in phenylpropanoid metabolism and secondary cell wall biogenesis: a comparativein planta analysis. Journal of Experimental Botany 59:3925−39 doi: 10.1093/jxb/ern234
CrossRef Google Scholar
|
[96]
|
Karpinska B, Karlsson M, Srivastava M, Stenberg A, Schrader J, et al. 2004. MYB transcription factors are differentially expressed and regulated during secondary vascular tissue development in hybrid aspen. Plant Molecular Biology 56:255−70 doi: 10.1007/s11103-004-3354-5
CrossRef Google Scholar
|
[97]
|
Tang X, Zhuang Y, Qi G, Wang D, Liu H, et al. 2015. Poplar PdMYB221 is involved in the direct and indirect regulation of secondary wall biosynthesis during wood formation. Scientific Reports 5:12240 doi: 10.1038/srep12240
CrossRef Google Scholar
|
[98]
|
Yang L, Zhao X, Ran L, Li C, Fan D, et al. 2017. PtoMYB156 is involved in negative regulation of phenylpropanoid metabolism and secondary cell wall biosynthesis during wood formation in poplar. Scientific Reports 7:41209 doi: 10.1038/srep41209
CrossRef Google Scholar
|
[99]
|
Jiao B, Zhao X, Lu W, Guo L, Luo K. 2019. The R2R3 MYB transcription factor MYB189 negatively regulates secondary cell wall biosynthesis in Populus. Tree Physiology 39:1187−200 doi: 10.1093/treephys/tpz040
CrossRef Google Scholar
|
[100]
|
Legay S, Sivadon P, Blervacq AS, Pavy N, Baghdady A, et al. 2010. EgMYB1, an R2R3 MYB transcription factor from eucalyptus negatively regulates secondary cell wall formation in Arabidopsis and poplar. New Phytologist 188:774−86 doi: 10.1111/j.1469-8137.2010.03432.x
CrossRef Google Scholar
|
[101]
|
Soler M, Plasencia A, Larbat R, Pouzet C, Jauneau A, et al. 2017. The Eucalyptus linker histone variant EgH1.3 cooperates with the transcription factor EgMYB1 to control lignin biosynthesis during wood formation. New Phytologist 213:287−99 doi: 10.1111/nph.14129
CrossRef Google Scholar
|
[102]
|
Gui J, Luo L, Zhong Y, Sun J, Umezawa T, et al. 2019. Phosphorylation of LTF1, an MYB transcription factor in populus, acts as a sensory switch regulating lignin biosynthesis in wood cells. Molecular Plant 12:1325−37 doi: 10.1016/j.molp.2019.05.008
CrossRef Google Scholar
|
[103]
|
Laubscher M, Brown K, Tonfack LB, Myburg AA, Mizrachi E, Hussey SG. 2018. Temporal analysis of Arabidopsis genes activated by Eucalyptus grandis NAC transcription factors associated with xylem fibre and vessel development. Scientific Reports 8:10983 doi: 10.1038/s41598-018-29278-w
CrossRef Google Scholar
|
[104]
|
Wang H, Tang R, Liu H, Chen H, Liu J, et al. 2013. Chimeric repressor of PtSND2 severely affects wood formation in transgenic Populus. Tree Physiology 33:878−86 doi: 10.1093/treephys/tpt058
CrossRef Google Scholar
|
[105]
|
Li E, Bhargava A, Qiang W, Friedmann MC, Forneris N, et al. 2012. The Class II KNOX gene KNAT7 negatively regulates secondary wall formation in Arabidopsis and is functionally conserved in Populus. New Phytologist 194:102−15 doi: 10.1111/j.1469-8137.2011.04016.x
CrossRef Google Scholar
|
[106]
|
Yang L, Zhao X, Yang F, Fan D, Jiang Y, et al. 2016. PtrWRKY19, a novel WRKY transcription factor, contributes to the regulation of pith secondary wall formation in Populus trichocarpa. Scientific Reports 6:18643 doi: 10.1038/srep18643
CrossRef Google Scholar
|
[107]
|
Timell TE. 1967. Recent progress in the chemistry of wood hemicelluloses. Wood Science and Technology 1:45−70 doi: 10.1007/BF00592255
CrossRef Google Scholar
|
[108]
|
Boerjan W, Ralph J, Baucher M. 2003. Lignin biosynthesis. Annual Review of Plant Biology 54:519−46 doi: 10.1146/annurev.arplant.54.031902.134938
CrossRef Google Scholar
|
[109]
|
Delmer DP. 1999. CELLULOSE BIOSYNTHESIS: Exciting Times for A Difficult Field of Study. Annual Review of Plant Physiology and Plant Molecular Biology 50:245−76 doi: 10.1146/annurev.arplant.50.1.245
CrossRef Google Scholar
|
[110]
|
Gardiner JC, Taylor NG, Turner SR. 2003. Control of cellulose synthase complex localization in developing xylem. The Plant Cell 15:1740−8 doi: 10.1105/tpc.012815
CrossRef Google Scholar
|
[111]
|
Suzuki S, Li L, Sun YH, Chiang VL. 2006. The cellulose synthase gene superfamily and biochemical functions of xylem-specific cellulose synthase-like genes in Populus trichocarpa. Plant Physiology 142:1233−45 doi: 10.1104/pp.106.086678
CrossRef Google Scholar
|
[112]
|
Song D, Shen J, Li L. 2010. Characterization of cellulose synthase complexes in Populus xylem differentiation. New Phytologist 187:777−90 doi: 10.1111/j.1469-8137.2010.03315.x
CrossRef Google Scholar
|
[113]
|
Xu W, Cheng H, Zhu S, Cheng J, Ji H, et al. 2021. Functional understanding of secondary cell wall cellulose synthases in Populus trichocarpa via the Cas9/gRNA-induced gene knockouts. New Phytologist 231:1478−95 doi: 10.1111/nph.17338
CrossRef Google Scholar
|
[114]
|
Xi W, Song D, Sun J, Shen J, Li L. 2017. Formation of wood secondary cell wall may involve two type cellulose synthase complexes in Populus. Plant Molecular Biology 93:419−29 doi: 10.1007/s11103-016-0570-8
CrossRef Google Scholar
|
[115]
|
Yu L, Chen H, Sun J, Li L. 2014. PtrKOR1 is required for secondary cell wall cellulose biosynthesis in Populus. Tree Physiology 34:1289−300 doi: 10.1093/treephys/tpu020
CrossRef Google Scholar
|
[116]
|
Coleman HD, Yan J, Mansfield SD. 2009. Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. PNAS 106:13118−23 doi: 10.1073/pnas.0900188106
CrossRef Google Scholar
|
[117]
|
Ruan Y, Llewellyn DJ, Furbank RT. 2003. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell 15:952−64 doi: 10.1105/tpc.010108
CrossRef Google Scholar
|
[118]
|
Gerber L, Zhang B, Roach M, Rende U, Gorzsás A, et al. 2014. Deficient sucrose synthase activity in developing wood does not specifically affect cellulose biosynthesis, but causes an overall decrease in cell wall polymers. New Phytologist 203:1220−30 doi: 10.1111/nph.12888
CrossRef Google Scholar
|
[119]
|
Rende U, Wang W, Gandla ML, Jönsson LJ, Niittylä T. 2017. Cytosolic invertase contributes to the supply of substrate for cellulose biosynthesis in developing wood. New Phytologist 214:796−807 doi: 10.1111/nph.14392
CrossRef Google Scholar
|
[120]
|
Simmons TJ, Mortimer JC, Bernardinelli OD, Pöppler AC, Brown SP, et al. 2016. Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR. Nature Communications 7:13902 doi: 10.1038/ncomms13902
CrossRef Google Scholar
|
[121]
|
Scheller HV, Ulvskov P. 2010. Hemicelluloses. Annual Review of Plant Biology 61:263−89 doi: 10.1146/annurev-arplant-042809-112315
CrossRef Google Scholar
|
[122]
|
Zhong R, Cui D, Ye Z. 2019. Secondary cell wall biosynthesis. New Phytologist 221:1703−23 doi: 10.1111/nph.15537
CrossRef Google Scholar
|
[123]
|
Brown DM, Zhang Z, Stephens E, Dupree P, Turner SR. 2009. Characterization of IRX10 and IRX10-like reveals an essential role in glucuronoxylan biosynthesis in Arabidopsis. The Plant Journal 57:732−46 doi: 10.1111/j.1365-313X.2008.03729.x
CrossRef Google Scholar
|
[124]
|
Brown DM, Goubet F, Wong VW, Goodacre R, Stephens E, et al. 2007. Comparison of five xylan synthesis mutants reveals new insight into the mechanisms of xylan synthesis. The Plant Journal 52:1154−68 doi: 10.1111/j.1365-313X.2007.03307.x
CrossRef Google Scholar
|
[125]
|
Keppler BD, Showalter AM. 2010. IRX14 and IRX14-LIKE, two glycosyl transferases involved in glucuronoxylan biosynthesis and drought tolerance in Arabidopsis. Molecular Plant 3:834−41 doi: 10.1093/mp/ssq028
CrossRef Google Scholar
|
[126]
|
Lee C, Teng Q, Huang WL, Zhong RQ, Ye ZH. 2010. The arabidopsis family GT43 glycosyltransferases form two functionally nonredundant groups essential for the elongation of glucuronoxylan backbone. Plant Physiology 153:526−41 doi: 10.1104/pp.110.155309
CrossRef Google Scholar
|
[127]
|
Wu AM, Hörnblad E, Voxeur A, Gerber L, Rihouey C, et al. 2010. Analysis of the arabidopsis IRX9/IRX9-L and IRX14/IRX14-L pairs of glycosyltransferase genes reveals critical contributions to biosynthesis of the hemicellulose glucuronoxylan. Plant Physiology 153:542−54 doi: 10.1104/pp.110.154971
CrossRef Google Scholar
|
[128]
|
Lee C, Teng Q, Zhong R, Ye Z. 2011. Molecular dissection of xylan biosynthesis during wood formation in poplar. Molecular Plant 4:730−47 doi: 10.1093/mp/ssr035
CrossRef Google Scholar
|
[129]
|
Lee C, Teng Q, Huang W, Zhong R, Ye Z. 2009. Down-regulation of PoGT47C expression in poplar results in a reduced glucuronoxylan content and an increased wood digestibility by cellulase. Plant and Cell Physiology 50:1075−89 doi: 10.1093/pcp/pcp060
CrossRef Google Scholar
|
[130]
|
Lee C, Teng Q, Huang W, Zhong R, Ye Z. 2009. The poplar GT8E and GT8F glycosyltransferases are functional orthologs of arabidopsis PARVUS involved in glucuronoxylan biosynthesis. Plant and Cell Physiology 50:1982−7 doi: 10.1093/pcp/pcp131
CrossRef Google Scholar
|
[131]
|
Lee C, Teng Q, Zhong R, Yuan Y, Haghighat M, Ye ZH. 2012. Three Arabidopsis DUF579 domain-containing GXM proteins are methyltransferases catalyzing 4-O-methylation of glucuronic acid on xylan. Plant and Cell Physiology 53:1934−49 doi: 10.1093/pcp/pcs138
CrossRef Google Scholar
|
[132]
|
Urbanowicz BR, Peña MJ, Ratnaparkhe S, Avci U, Backe J, et al. 2012. 4-O-methylation of glucuronic acid in Arabidopsis glucuronoxylan is catalyzed by a domain of unknown function family 579 protein. PNAS 109:14253−58 doi: 10.1073/pnas.1208097109
CrossRef Google Scholar
|
[133]
|
Yuan Y, Teng Q, Zhong R, Ye Z. 2014. Identification and biochemical characterization of four wood-associated glucuronoxylan methyltransferases in Populus. PLoS One 9:e87370 doi: 10.1371/journal.pone.0087370
CrossRef Google Scholar
|
[134]
|
Song D, Gui J, Liu C, Sun J, Li L. 2016. Suppression of PtrDUF579-3 expression causes structural changes of the glucuronoxylan in Populus. Frontiers in Plant Science 7:493 doi: 10.3389/fpls.2016.00493
CrossRef Google Scholar
|
[135]
|
Song D, Sun J, Li L. 2014. Diverse roles of PtrDUF579 proteins in Populus and PtrDUF579-1 function in vascular cambium proliferation during secondary growth. Plant Molecular Biology 85:601−12 doi: 10.1007/s11103-014-0206-9
CrossRef Google Scholar
|
[136]
|
Zhong R, Cui D, Ye Z. 2018. A group of Populus trichocarpa DUF231 proteins exhibit differential O-acetyltransferase activities toward xylan. Plos One 13:e0194532 doi: 10.1371/journal.pone.0194532
CrossRef Google Scholar
|
[137]
|
Pawar PMA, Ratke C, Balasubramanian VK, Chong SL, Gandla ML, et al. 2017. Downregulation of RWA genes in hybrid aspen affects xylan acetylation and wood saccharification. New Phytologist 214:1491−505 doi: 10.1111/nph.14489
CrossRef Google Scholar
|
[138]
|
Liepman AH, Nairn CJ, Willats WGT, Sørensen I, Roberts AW, et al. 2007. Functional genomic analysis supports conservation of function among cellulose synthase-like a gene family members and suggests diverse roles of mannans in plants. Plant Physiology 143:1881−93 doi: 10.1104/pp.106.093989
CrossRef Google Scholar
|
[139]
|
Shi R, Sun YH, Li Q, Heber S, Sederoff R, et al. 2010. Towards a systems approach for lignin biosynthesis in Populus trichocarpa: transcript abundance and specificity of the monolignol biosynthetic genes. Plant and Cell Physiology 51:144−63 doi: 10.1093/pcp/pcp175
CrossRef Google Scholar
|
[140]
|
Wang JP, Matthews ML, Williams CM, Shi R, Yang CM, et al. 2018. Improving wood properties for wood utilization through multi-omics integration in lignin biosynthesis. Nature Communications 9:1579 doi: 10.1038/s41467-018-03863-z
CrossRef Google Scholar
|
[141]
|
de Lyra Soriano Saleme M, Cesarino I, Vargas L, Kim H, Vanholme R, et al. 2017. Silencing CAFFEOYL SHIKIMATE ESTERASE affects lignification and improves saccharification in poplar. Plant Physiology 175:1040−57 doi: 10.1104/pp.17.00920
CrossRef Google Scholar
|
[142]
|
Bonawitz ND, Chapple C. 2010. The genetics of lignin biosynthesis: connecting genotype to phenotype. Annual Review of Genetics 44:337−63 doi: 10.1146/annurev-genet-102209-163508
CrossRef Google Scholar
|
[143]
|
Lu S, Li Q, Wei H, Chang M, Tunlaya-Anukit S, et al. 2013. Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa. PNAS 110:10848−53 doi: 10.1073/pnas.1308936110
CrossRef Google Scholar
|
[144]
|
Shigeto J, Itoh Y, Hirao S, Ohira K, Fujita K, et al. 2015. Simultaneously disrupting AtPrx2, AtPrx25 and AtPrx71 alters lignin content and structure in Arabidopsis stem. Journal of Integrative Plant Biology 57:349−56 doi: 10.1111/jipb.12334
CrossRef Google Scholar
|
[145]
|
Li Y, Kajita S, Kawai S, Katayama Y, Morohoshi N. 2003. Down-regulation of an anionic peroxidase in transgenic aspen and its effect on lignin characteristics. Journal of Plant Research 116:175−82 doi: 10.1007/s10265-003-0087-5
CrossRef Google Scholar
|
[146]
|
Kumar M, Campbell L, Turner S. 2016. Secondary cell walls: biosynthesis and manipulation. Journal of Experimental Botany 67:515−31 doi: 10.1093/jxb/erv533
CrossRef Google Scholar
|
[147]
|
Pauly M, Keegstra K. 2010. Plant cell wall polymers as precursors for biofuels. Current Opinion in Plant Biology 13:304−11 doi: 10.1016/j.pbi.2009.12.009
CrossRef Google Scholar
|
[148]
|
Vanholme R, Morreel K, Ralph J, Boerjan W. 2008. Lignin engineering. Current Opinion in Plant Biology 11:278−85 doi: 10.1016/j.pbi.2008.03.005
CrossRef Google Scholar
|
[149]
|
Li L, Zhou Y, Cheng X, Sun J, Marita JM, et al. 2003. Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. PNAS 100:4939−44 doi: 10.1073/pnas.0831166100
CrossRef Google Scholar
|
[150]
|
Hu WJ, Harding SA, Lung J, Popko JL, Ralph J, et al. 1999. Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nature Biotechnology 17:808−12 doi: 10.1038/11758
CrossRef Google Scholar
|
[151]
|
Chanoca A, de Vries L, Boerjan W. 2019. Lignin Engineering in Forest Trees. Frontiers in Plant Science 10:912 doi: 10.3389/fpls.2019.00912
CrossRef Google Scholar
|
[152]
|
Voelker SL, Lachenbruch B, Meinzer FC, Jourdes M, Ki CY, et al. 2010. Antisense down-regulation of 4CL expression alters lignification, tree growth, and saccharification potential of field-grown poplar. Plant Physiology 154:874−86 doi: 10.1104/pp.110.159269
CrossRef Google Scholar
|
[153]
|
Gui JS, Lam PY, Tobimatsu Y, Sun JY, Huang C, et al. 2020. Fibre-specific regulation of lignin biosynthesis improves biomass quality in Populus. New Phytologist 226:1074−87 doi: 10.1111/nph.16411
CrossRef Google Scholar
|
[154]
|
Cao S, Huang C, Luo L, Zheng S, Zhong Y, et al. 2020. Cell-specific suppression of 4-Coumarate-CoA ligase gene reveals differential effect of lignin on cell physiological function inPopulus. Frontiers in Plant Science 11:589729 doi: 10.3389/fpls.2020.589729
CrossRef Google Scholar
|
[155]
|
De Meester B, Vanholme R, de Vries L, Wouters M, Van Doorsselaere J, Boerjan W. 2021. Vessel- and ray-specific monolignol biosynthesis as an approach to engineer fiber-hypolignification and enhanced saccharification in poplar. The Plant Journal 108:752−65 doi: 10.1111/tpj.15468
CrossRef Google Scholar
|
[156]
|
van Doorn WG. 2011. Classes of programmed cell death in plants, compared to those in animals. Journal of Experimental Botany 62:4749−61 doi: 10.1093/jxb/err196
CrossRef Google Scholar
|
[157]
|
Courtois-Moreau CL, Pesquet E, Sjödin A, Muñiz L, Bollhöner B, et al. 2009. A unique program for cell death in xylem fibers of Populus stem. Plant Journal 58:260−74 doi: 10.1111/j.1365-313X.2008.03777.x
CrossRef Google Scholar
|
[158]
|
Han J, Lin W, Oda Y, Cui K, Fukuda H, et al. 2012. The proteasome is responsible for caspase-3-like activity during xylem development. The Plant Journal 72:129−41 doi: 10.1111/j.1365-313X.2012.05070.x
CrossRef Google Scholar
|
[159]
|
Bollhöner B, Jokipii-Lukkari S, Bygdell J, Stael S, Adriasola M, et al. 2018. The function of two type II metacaspases in woody tissues of Populus trees. New Phytologist 217:1551−65 doi: 10.1111/nph.14945
CrossRef Google Scholar
|
[160]
|
Chen H, Pang Y, Zeng J, Ding Q, Yin S, et al. 2012. The Ca2+-dependent DNases are involved in secondary xylem development in Eucommia ulmoides. Journal of Integrative Plant Biology 54:456−70 doi: 10.1111/j.1744-7909.2012.01134.x
CrossRef Google Scholar
|
[161]
|
Stewart CM. 1966. Excretion and Heartwood Formation in Living Trees. Science 153:1068−74 doi: 10.1126/science.153.3740.1068
CrossRef Google Scholar
|
[162]
|
Spicer R. 2005. Senescence in Secondary Xylem: Heartwood Formation as an Active Developmental Program. In Vascular Transport in Plants, eds. Holbrook NM, Zwieniecki MA. UK: Academic Press. pp. 457−75 https://doi.org/10.1016/B978-012088457-5/50024-1
|
[163]
|
Li H, Dai X, Huang X, Xu M, Wang Q, et al. 2021. Single-cell RNA sequencing reveals a high-resolution cell atlas of xylem in Populus. Journal of Integrative Plant Biology 63:1906−21 doi: 10.1111/jipb.13159
CrossRef Google Scholar
|