[1]
|
Levan A. 1945. The present state of plant breeding by induction of polyploidy. Sveriges Utsä des-fö renings Tidskrift 55:109−43
Google Scholar
|
[2]
|
Levan A. 1948. Nordisk polyploidif oradling has jordbruksvaxter. pp. 468-490. Nord. Jordhrugsforskn
|
[3]
|
Dewey DR. 1975. Genome relations of diploid Agropyron libanoticum with diploid and autotetraploid Agropyron stipifolium. Botanical Gazette 136:116−21 doi: 10.1086/336791
CrossRef Google Scholar
|
[4]
|
Lewis WH. 1979. Polyploidy: Biological Relevance. Basic Life Science. 13:1−544
|
[5]
|
Nilsson-Ehle H. 1936. Note regarding the gigas form of Populus tremula found in nature. Hereditas 21:372−82
Google Scholar
|
[6]
|
Einspahr DW, Wyckoff GW. 1975. Aspen hybrids promise future source of lake states fiber. Pulp and Paper 49:118−19
Google Scholar
|
[7]
|
Einspahr DW. 1984. Production and utilization of triploid hybrid aspen. Aspen Bibliography 58:401−9
Google Scholar
|
[8]
|
Chen C, Qi L, Zhang S, Han S, Li X, et al. 2004. The karyptype analysis of triploid poplar. Journal of Wuhan Botanical Research 22:565−67 doi: 10.3969/j.issn.2095-0837.2004.06.017
CrossRef Google Scholar
|
[9]
|
Kang X, Wang J. 2010. Poplar polyploid induction technology research (in Chinese). Beijing: Science Press
|
[10]
|
Zhang S, Chen B, Han S, Li X, Ren J, et al. 2005. Chromosome numbers of some Populus taxa from China. Acta Phytotaxonomica Sinica 43:539−44
Google Scholar
|
[11]
|
Zhu Z, Lin H, Kang X. 1995. Studies on allotriploid breeding of Populus tomentosa B301 clones. Scientia Silvae Sinicae 31:499−505
Google Scholar
|
[12]
|
Seitz FW. 1954. The occurrence of triploids after self-pollination of anomalous androgynous flowers of a grey poplar. Zeitschrift für Forstgenetik und Forstpflanzenzüchtung 3:1−6
Google Scholar
|
[13]
|
Manzos AM. 1960. Fast-growing form of Populus balsamifera obtained by pollinating female flowers with fractionated pollen of the same species. Doklady Akademii Nauk SSSR 130:433−35
Google Scholar
|
[14]
|
Mohrdiek O. 1976. Progeny studies in poplars of the sections Aigeiros, Tacamahaca and Leuce, with recommendations for further breeding work. Thesis. Georg August Universitat Gottingen, German Federal Republic.
|
[15]
|
Xi X, Li D, Xu W, Guo L, Zhang J, et al. 2012. 2n egg formation in Populus ×euramericana (Dode) Guinier. Tree Genetics & Genomes 8:1237−45 doi: 10.1007/s11295-012-0510-y
CrossRef Google Scholar
|
[16]
|
Han Z, Geng X, Du K, Xu C, Yao P, et al. 2018. Analysis of genetic composition and transmitted parental heterozygosity of natural 2n gametes in Populus tomentosa based on SSR markers. Planta 247:1407−21 doi: 10.1007/s00425-018-2871-4
CrossRef Google Scholar
|
[17]
|
Kang X. 2002. Mechanism of 2n pollen occurring in Chinese white poplar. Journal of Beijing Forestry University 24:61−7
Google Scholar
|
[18]
|
Wang J, Kang X. 2009. Distribution of microtubular cytoskeletons and organelle nucleoids during microsporogenesis in a 2n pollen producer of hybrid Populus. Silvae Genetica 58:220−26 doi: 10.1515/sg-2009-0028
CrossRef Google Scholar
|
[19]
|
Zhang Z, Kang X. 2010. Cytological characteristics of numerically unreduced pollen production in Populus tomentosa Carr. Euphytica 173:151−59 doi: 10.1007/s10681-009-0051-0
CrossRef Google Scholar
|
[20]
|
Johnsson H, Eklundh C. 1940. Colchicine treatment as a method in breeding hardwood species. Svensk Papperstidning 43:373−77
Google Scholar
|
[21]
|
Mashkina OS, Burdaeva LM, Belozerova MM, V'yunova LN. 1989. Method of obtaining diploid pollen of woody species. Lesovedenie 1:19−25
Google Scholar
|
[22]
|
Mashkina OS, Burdaeva LM, V'yunova LN. 1989. Experimental mutagenesis and polyploidy in breeding forest trees. Lesnaya Genetika, Lesnaya genetika, selektsiya i fiziologiyadrevesnykh rasteniĭ, Voronezh, 25–30 sentyabrya. Materialy Mezhdunarodnogo simpozi-uma. pp. 136–37.
|
[23]
|
Kang X, Zhu Z, Lin H. 1999. Study on the effective treating period for pollen chromosome doubling of Populus tomentosa × P.bolleana. Scientia Silvae Sinicae 35:21−24
Google Scholar
|
[24]
|
Zhang Z, Li F. 1992. Studies on chromosome doubling and triploid breeding of white poplar(I): the techniques of the pollen chromosome doubling. Journal of Beijing Forestry University 1992:52−58
Google Scholar
|
[25]
|
Li K, Xiao J, Liu G, Li Z. 2006. Optimization of induced 2n pollen grain of Populus ussuriensis Kom by colchicine. Journal of Nuclear Agriculture Sciences 20:282−6
Google Scholar
|
[26]
|
Tian M, Li Y, Zhang P, Wan J, Hao J. 2018. Pollen chromosome doubling induced by high temperature exposure to produce hybrid triploids in Populus canescens. Scientia Silvae Sinicae 54:39−47
Google Scholar
|
[27]
|
Wang J, Li D, Shang F, Kang X. 2017. High temperature-induced production of unreduced pollen and its cytological effects in Populus. Scientific Reports 7:5281 doi: 10.1038/s41598-017-05661-x
CrossRef Google Scholar
|
[28]
|
Gulyaeva EM, Sviridova AD. 1979. Method of producing diploid pollen in forest trees. U.S.S.R. Patent #664, 617
|
[29]
|
Huang Q, Zhang Z, Kang X. 1992. 2n pollen of P. tomentosa × P. bolleana induced by four antimicrotubule agents. Journal of Beijing Forestry University 24:12−15
Google Scholar
|
[30]
|
Kang X, Zhu Z, Zhang Z. 2000. Suitable period of high temperature treatment for 2n pollen of Populus tomentosa × P. bolleana. Journal of Beijing Forestry University 22:1−4 doi: 10.13332/j.1000-1522.2000.03.001
CrossRef Google Scholar
|
[31]
|
Kang X, Zhu Z. 1997. A study on the 2n pollen vitality and germinant characteristics of white poplar. Acta Botanica Yunnanica 19:402−6
Google Scholar
|
[32]
|
Kang X, Zhu Z, Lin H. 2000. Radiosensitivity of different ploidy pollen in poplar and its application. Acta Genetica Sinica 27:78−82
Google Scholar
|
[33]
|
Ewald D, Ulrich K. 2012. In vitro pollination in poplar of section Populus. Plant Cell, Tissue and Organ Culture 111:255−58 doi: 10.1007/s11240-012-0189-7
CrossRef Google Scholar
|
[34]
|
Li Y, Zhu Z, Tian Y, Zhang Z, Kang X. 2000. Obtaining triploids by high and low temperature treating female flower buds of white poplar. Journal of Beijing Forestry University 22:7−12 doi: 10.13332/j.1000-1522.2000.05.002
CrossRef Google Scholar
|
[35]
|
Li Y, Zhu Z, Tian Y, Zhang Z, Kang X. 2001. Studies on obtaining triploid by colchicine treatind female flower buds of White poplar. Scientia Silvae Sinicae 37:68−74
Google Scholar
|
[36]
|
Li Y, Ma J, Kang X. 2005. Stages of MMC meiosis and its timely discrimination of white poplars. Journal of Beijing Forestry University 27:70−74
Google Scholar
|
[37]
|
Li Y, Kang X, Wang S, Zhang Z, Chen H. 2008. Triploid induction in Populus alba × P. glandulosa by chromosome doubling of female gametes. Silvae Genetica 57:37−40 doi: 10.1515/sg-2008-0006
CrossRef Google Scholar
|
[38]
|
Wang J, Li D, Kang X. 2012. Induction of unreduced megaspores with high temperature during megasporogenesis inPopulus. Annals of Forest Science 69:59−67 doi: 10.1007/s13595-011-0152-5
CrossRef Google Scholar
|
[39]
|
Lu M, Zhang P, Kang X. 2013. Induction of 2n female gametes in Populus adenopoda Maxim by high temperature exposure during female gametophyte development. Breeding Science 63:96−103 doi: 10.1270/jsbbs.63.96
CrossRef Google Scholar
|
[40]
|
Geng X, Ren Y, Han Z, Du K, Kang X. 2018. Production of hybrid triploids via inducing chromosome doubling of megaspore with high temperature treatment in Leuce poplar. Journal of Beijing Forestry University 40:12−18 doi: 10.13332/j.1000-1522.20180215
CrossRef Google Scholar
|
[41]
|
Kang X, Zhang P, Gao P, Zhao F. 2004. Discovery of a new way of poplar triploids induced with colchicine after pollination. Journal of Beijing Forestry University 26:1−4
Google Scholar
|
[42]
|
Wang J, Kang X, Li D. 2012. High temperature-induced triploid production during embryo sac development in Populus. Silvae Genetica 61:85−93 doi: 10.1515/sg-2012-0011
CrossRef Google Scholar
|
[43]
|
Wang J, Kang X, Li D, Chen H, Zhang P. 2010. Induction of diploid eggs with colchicine during embryo sac development in Populus. Silvae Genetica 59:40−48 doi: 10.1515/sg-2010-0005
CrossRef Google Scholar
|
[44]
|
Kang N, Bai F, Zhang P, Kang X. 2015. Inducing chromosome doubling of embryo sac in Populus tomentosa with high temperature exposure for hybrid triploids. Journal of Beijing Forestry University 37:79−86 doi: 10.13332/j.cnki.jbfu.2015.02.021
CrossRef Google Scholar
|
[45]
|
Ewald D, Ulrich K, Naujoks G, Schröder MB. 2009. Induction of tetraploid poplar and black locust plants using colchicine: chloroplast number as an early marker for selecting polyploids in vitro. Plant Cell, Tissue and Organ Culture 99:353−57 doi: 10.1007/s11240-009-9601-3
CrossRef Google Scholar
|
[46]
|
Mattila RE. 1961. On the production of the tetraploid hybrid Aspen by colchicine treatment. Hereditas 47:631−40 doi: 10.1111/j.1601-5223.1961.tb01792.x
CrossRef Google Scholar
|
[47]
|
Pesina K. 1963. Experimental induction of polyploidy in poplars. Preslia 35:101−9
Google Scholar
|
[48]
|
Lu M, Zhang P, Wang J, Kang X, Wu J, et al. 2014. Induction of tetraploidy using high temperature exposure during the first zygote division in Populus adenopoda Maxim. Plant Growth Regulation 72:279−87 doi: 10.1007/s10725-013-9859-7
CrossRef Google Scholar
|
[49]
|
Wang J, Shi L, Song S, Tian J, Kang X. 2013. Tetraploid production through zygotic chromosome doubling in Populus. Silva Fennica 47:932 doi: 10.14214/sf.932
CrossRef Google Scholar
|
[50]
|
Einspahr DW. 1965. Colchicine treatment of newly formed embryos of quaking Aspen. Forest Science 11:456−59 doi: 10.1093/forestscience/11.4.456
CrossRef Google Scholar
|
[51]
|
Broertjes C, van Harten AM. 1985. Single cell origin of adventitious buds. Euphytica 34:93−95 doi: 10.1007/BF00022867
CrossRef Google Scholar
|
[52]
|
Cai X, Kang X. 2011. In vitro tetraploid induction from leaf explants of Populus pseudo-simonii Kitag. Plant Cell Reports 30:1771−78 doi: 10.1007/s00299-011-1085-z
CrossRef Google Scholar
|
[53]
|
Xu C, Huang Z, Liao T, Li Y, Kang X. 2016. In vitro tetraploid plants regeneration from leaf explants of multiple genotypes in Populus. Plant Cell, Tissue and Organ Culture 125:1−9 doi: 10.1007/s11240-015-0922-0
CrossRef Google Scholar
|
[54]
|
Xu C, Zhang Y, Huang Z, Yao P, Li Y, et al. 2018. Impact of the leaf cut callus development stages of populus on the tetraploid production rate by colchicine treatment. Journal of Plant Growth Regulation 37:635−44 doi: 10.1007/s00344-017-9763-x
CrossRef Google Scholar
|
[55]
|
De Storme N, Geelen D. 2011. The Arabidopsis mutant jason produces unreduced first division restitution male gametes through a parallel/fused spindle mechanism in meiosis II. Plant Physiology 155:1403−15 doi: 10.1104/pp.110.170415
CrossRef Google Scholar
|
[56]
|
De Storme N, Geelen D. 2013. Sexual polyploidization in plants-cytological mechanisms and molecular regulation. New Phytologist 198:670−84 doi: 10.1111/nph.12184
CrossRef Google Scholar
|
[57]
|
Bastiaanssen HJM, Van Den Berg PMMM, Lindhout P, Jacobsen E, Ramanna MS. 1998. Postmeiotic restitution in 2n-egg formation of diploid potato. Heredity 81:20−27 doi: 10.1046/j.1365-2540.1998.00370.x
CrossRef Google Scholar
|
[58]
|
Mendiburu AO, Peloquin SJ. 1977. Bilateral sexual polyploidization in potatoes. Euphytica 26:573−83 doi: 10.1007/BF00021683
CrossRef Google Scholar
|
[59]
|
Barone A, Gebhardt C, Frusciante L. 1995. Heterozygosity in 2n Gametes of Potato Evaluated by Rflp Markers. Theoretical and Applied Genetics 91:98−104 doi: 10.1007/BF00220864
CrossRef Google Scholar
|
[60]
|
Dong C, Suo Y, Wang J, Kang X. 2015. Analysis of transmission of heterozygosity by 2n gametes in Populus (Salicaceae). Tree Genetics & Genomes 11:799 doi: 10.1007/s11295-014-0799-9
CrossRef Google Scholar
|
[61]
|
Liao T, Cheng S, Zhu X, Min Y, Kang X. 2016. Effects of triploid status on growth, photosynthesis, and leaf area in Populus. Trees 30:1137−47 doi: 10.1007/s00468-016-1352-2
CrossRef Google Scholar
|
[62]
|
Dong C, Mao J, Suo Y, Shi L, Wang J, et al. 2014. A strategy for characterization of persistent heteroduplex DNA in higher plants. The Plant Journal 80:282−91 doi: 10.1111/tpj.12631
CrossRef Google Scholar
|
[63]
|
Nilsson-Ehle H. 1936. Über eine in der natur gefundene Gigasform von Populus tremula. Hereditas 21:379−82 doi: 10.1111/j.1601-5223.1936.tb03205.x
CrossRef Google Scholar
|
[64]
|
Weisgerber H, Rau HM, Gartner EJ, Baumeister G, Kohnert H, et al. 1980. 25 years of forest tree breeding in Hesse. Allgemeing-forstzeitschrift 26:665−712
Google Scholar
|
[65]
|
Zhu Z. 2006. Genetic improvement of Populus tomentosa Carr. Beijing: China Forestry Publishing House
|
[66]
|
Xu C, Zhang Y, Han Q, Kang X. 2020. Molecular mechanism of slow vegetative growth in Populus tetraploid. Genes 11:1417 doi: 10.3390/genes11121417
CrossRef Google Scholar
|
[67]
|
Zeng Q, Liu Z, Du K, Kang X. 2019. Oryzalin-induced chromosome doubling in triploid Populus and its effect on plant morphology and anatomy. Plant Cell, Tissue and Organ Culture 138:571−81 doi: 10.1007/s11240-019-01654-y
CrossRef Google Scholar
|
[68]
|
Stupar RM, Bhaskar PB, Yandell BS, Rensink WA, Hart AL, et al. 2007. Phenotypic and transcriptomic changes associated with potato autopolyploidization. Genetics 176:2055−67 doi: 10.1534/genetics.107.074286
CrossRef Google Scholar
|
[69]
|
Chaudhary B, Flagel L, Stupar RM, Udall JA, Verma N, et al. 2009. Reciprocal silencing, transcriptional bias and functional divergence of homeologs in polyploid cotton (gossypium). Genetics 182:503−17 doi: 10.1534/genetics.109.102608
CrossRef Google Scholar
|
[70]
|
Buggs RJA, Chamala S, Wu W, Gao L, May GD, et al. 2010. Characterization of duplicate gene evolution in the recent natural allopolyploid Tragopogon miscellus by next-generation sequencing and Sequenom iPLEX MassARRAY genotyping. Molecular Ecology 19:132−46 doi: 10.1111/j.1365-294X.2009.04469.x
CrossRef Google Scholar
|
[71]
|
Fujimoto R, Taylor JM, Sasaki T, Kawanabe T, Dennis ES. 2011. Genome wide gene expression in artificially synthesized amphidiploids of Arabidopsis. Plant Molecular Biology 77:419 doi: 10.1007/s11103-011-9820-y
CrossRef Google Scholar
|
[72]
|
Ilut DC, Coate JE, Luciano AK, Owens TG, May GD, et al. 2012. A comparative transcriptomic study of an allotetraploid and its diploid progenitors illustrates the unique advantages and challenges of RNA-seq in plant species. American Journal of Botany 99:383−96 doi: 10.3732/ajb.1100312
CrossRef Google Scholar
|
[73]
|
Wang S, Chen W, Yang C, Yao J, Xiao W, et al. 2016. Comparative proteomic analysis reveals alterations in development and photosynthesis-related proteins in diploid and triploid rice. BMC Plant Biology 16:199 doi: 10.1186/s12870-016-0891-4
CrossRef Google Scholar
|
[74]
|
Ni Z, Kim ED, Ha M, Lackey E, Liu J, et al. 2009. Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature 457:327−31 doi: 10.1038/nature07523
CrossRef Google Scholar
|
[75]
|
Du K, Han Q, Zhang Y, Kang X. 2019. Differential expression of genes related to the formation of giant leaves in triploid poplar. Forests 10:920 doi: 10.3390/f10100920
CrossRef Google Scholar
|
[76]
|
Cheng S, Huang Z, Li Y, Liao T, Suo Y, et al. 2015. Differential transcriptome analysis between Populus and its synthesized allotriploids driven by second-division restitution. Journal of Integrative Plant Biology 57:1031−45 doi: 10.1111/jipb.12328
CrossRef Google Scholar
|
[77]
|
Cheng S, Yang J, Liao T, Zhu X, Suo Y, et al. 2015. Transcriptomic changes following synthesis of a Populus full-sib diploid and allotriploid population with different heterozygosities driven by three types of 2n female gamete. Plant Molecular Biology 89:493−510 doi: 10.1007/s11103-015-0384-0
CrossRef Google Scholar
|
[78]
|
Wu W, Li J, Wang Q, Lv K, Du K, et al. 2021. Growth-regulating factor 5 (GRF5)-mediated gene regulatory network promotes leaf growth and expansion in poplar. New Phytologist 230:612−28 doi: 10.1111/nph.17179
CrossRef Google Scholar
|
[79]
|
Li J, Wang Y, Wei H, Kang X. 2020. Comparative proteomic analysis of leaves at different ages in allotriploid Populus. Forests 11:1154 doi: 10.3390/f11111154
CrossRef Google Scholar
|
[80]
|
Wei H. 2019. Construction of a hierarchical gene regulatory network centered around a transcription factor. Briefings in Bioinformatics 20:1021−31 doi: 10.1093/bib/bbx152
CrossRef Google Scholar
|
[81]
|
Lin YC, Li W, Sun YH, Kumari S, Wei H, et al. 2013. SND1 transcription factor-directed quantitative functional hierarchical genetic regulatory network in wood formation in Populus trichocarpa. The Plant Cell 25:4324−41 doi: 10.1105/tpc.113.117697
CrossRef Google Scholar
|
[82]
|
Du K, Liao T, Ren Y, Geng X, Kang X. 2020. Molecular mechanism of vegetative growth advantage in allotriploid Populus. International Journal of Molecular Sciences 21:441 doi: 10.3390/ijms21020441
CrossRef Google Scholar
|
[83]
|
Suo Y, Min Y, Dong C, Wang Y, Cheng S, et al. 2017. MicroRNA expression changes following synthesis of three full-sib Populus triploid populations with different heterozygosities. Plant Molecular Biology 95:215−25 doi: 10.1007/s11103-017-0627-3
CrossRef Google Scholar
|
[84]
|
Bingham ET, Burnham CR, Gates CE. 1968. Double and single backcross linkage estimates in autotetraploid maize. Genetics 59:399−410 doi: 10.1093/genetics/59.3.399
CrossRef Google Scholar
|
[85]
|
Han Z, Han Q, Xia Y, Geng X, Du K, et al. 2020. Construction of a breeding parent population of Populus tomentosa based on SSR genetic distance analysis. Scientific Reports 10:18573 doi: 10.1038/s41598-020-74941-w
CrossRef Google Scholar
|
[86]
|
Kang X. 2019. Thinking about clonal breeding strategy of forest trees. Journal of Beijing Forestry University 41:1−9 doi: 10.13332/j.1000-1522.20190098
CrossRef Google Scholar
|
[87]
|
Dong C, Suo Y, Kang X. 2014. Assessment of the genetic composition of triploid hybrid Populus using SSR markers with low recombination frequencies. Canadian Journal of Forest Research 44:692−99 doi: 10.1139/cjfr-2013-0360
CrossRef Google Scholar
|
[88]
|
Geng X, Lu T, Du K, Yang J, Kang X. 2021. Variation of homologous recombination in Populus tomentosa with different genotypes. Hereditas 43:182−93 doi: 10.16288/j.yczz.20-205
CrossRef Google Scholar
|
[89]
|
Finnegan EJ, Kovac KA. 2000. Plant DNA methyltransferases. Plant Molecular Biology 43:189−201 doi: 10.1023/A:1006427226972
CrossRef Google Scholar
|
[90]
|
Kashkush K, Feldman M, Levy AA. 2003. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nature Genetics 33:102−6 doi: 10.1038/ng1063
CrossRef Google Scholar
|
[91]
|
Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC. 2007. Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. The Plant Cell 19:3403−17 doi: 10.1105/tpc.107.054346
CrossRef Google Scholar
|
[92]
|
Suo Y, Dong C, Kang X. 2015. Inheritance and variation of cytosine methylation in three Populus allotriploid populations with different heterozygosity. Plos One 10:e0126491 doi: 10.1371/journal.pone.0126491
CrossRef Google Scholar
|