[1]

Frusciante L, Carli P, Ercolano MR, Pernice R, Di Matteo A, et al. 2007. Antioxidant nutritional quality of tomato. Molecular Nutrition & Food Research 51:609−17

doi: 10.1002/mnfr.200600158
[2]

Coyago-Cruz E, Corell M, Moriana A, Mapelli-Brahm P, Hernanz D, et al. 2019. Study of commercial quality parameters, sugars, phenolics, carotenoids and plastids in different tomato varieties. Food Chemistry 277:480−89

doi: 10.1016/j.foodchem.2018.10.139
[3]

Zhang J, Zhang Y, Song S, Su W, Hao Y, et al. 2020. Supplementary Red light results in the earlier ripening of tomato fruit depending on ethylene production. Environmental and Experimental Botany 175:104044

doi: 10.1016/j.envexpbot.2020.104044
[4]

Klee HJ, Tieman DM. 2018. The genetics of fruit flavour preferences. Nature Reviews Genetics 19:347−56

doi: 10.1038/s41576-018-0002-5
[5]

Mata CI, Magpantay J, Hertog MLATM, Van de Poel B, Nicolaï BM. 2021. Expression and protein levels of ethylene receptors, CTRs and EIN2 during tomato fruit ripening as affected by 1-MCP. Postharvest Biology and Technology 179:111573

doi: 10.1016/j.postharvbio.2021.111573
[6]

Li C, Hou X, Qi N, Liu H, Li Y, et al. 2021. Insight into ripening-associated transcription factors in tomato: A review. Scientia Horticulturae 288:110363

doi: 10.1016/j.scienta.2021.110363
[7]

Cedillo-Jimenez CA, Feregrino-Perez AA, Guevara-González RG, Cruz-Hernández A. 2020. MicroRNA regulation during the tomato fruit development and ripening: A review. Scientia Horticulturae 270:109435

doi: 10.1016/j.scienta.2020.109435
[8]

Klee HJ, Tieman DM. 2013. Genetic challenges of flavor improvement in tomato. Trends in Genetics 29:257−62

doi: 10.1016/j.tig.2012.12.003
[9]

Li L, Yuan H. 2013. Chromoplast biogenesis and carotenoid accumulation. Archives of Biochemistry and Biophysics 539:102−9

doi: 10.1016/j.abb.2013.07.002
[10]

Yang J, Adhikari MN, Liu H, Xu H, He G, et al. 2012. Characterization and functional analysis of the genes encoding 1-deoxy-D-xylulose-5-phosphate reductoisomerase and 1-deoxy-D-xylulose-5-phosphate synthase, the two enzymes in the MEP pathway, from Amomum villosum Lour. Molecular Biology Reports 39:8287−96

doi: 10.1007/s11033-012-1676-y
[11]

Paetzold H, Garms S, Bartram S, Wieczorek J, Urós-Gracia EM, et al. 2010. The isogene 1-deoxy-D-xylulose 5-phosphate synthase 2 controls isoprenoid profiles, precursor pathway allocation, and density of tomato trichomes. Molecular Plant 3:904−16

doi: 10.1093/mp/ssq032
[12]

Botella-Pavía P, Besumbes Ó, Phillips MA, Carretero-Paulet L, Boronat A, et al. 2010. Regulation of carotenoid biosynthesis in plants: evidence for a key role of hydroxymethylbutenyl diphosphate reductase in controlling the supply of plastidial isoprenoid precursors. The Plant Journal 40:188−99

doi: 10.1111/j.1365-313X.2004.02198.x
[13]

Fantini E, Falcone G, Frusciante S, Giliberto L,Giuliano G. 2013. Dissection of tomato lycopene biosynthesis through virus-induced gene silencing. Plant Physiology 163:986−98

doi: 10.1104/pp.113.224733
[14]

Gupta P, Rodriguez-Franco M, Bodanapu R, Sreelakshmi Y, Sharma R. 2021. Phytoene synthase 2 in tomato fruits remains functional andcontributes to abscisic acid formation. Plant Science 316:111177

doi: 10.1016/j.plantsci.2022.111177
[15]

Oelmüller R, Mohr H. 1986. Photooxidative destruction of chloroplasts and its consequences for expression of nuclear genes. Planta 167:106−13

doi: 10.1007/BF00446376
[16]

Georgiadou EC, Antoniou C, Majak I, Goulas V, Filippou P, et al. 2021. Tissue-specific elucidation of lycopene metabolism in commercial tomato fruit cultivars during ripening. Scientia Horticulturae 284:110144

doi: 10.1016/j.scienta.2021.110144
[17]

Orsi B, Sestari I, Preczenhak AP, Tessmer MA, da Silva Souza MA, et al. 2021. Allelic variations in the tomato carotenoid pathway lead to pleiotropic effects on fruit ripening and nutritional quality. Postharvest Biology and Technology 181:111632

doi: 10.1016/j.postharvbio.2021.111632
[18]

Mi J, Vallarino JG, Petřík I, Novák O, Correa SM, et al. 2022. A manipulation of carotenoid metabolism influence biomass partitioning and fitness in tomato. Metabolic Engineering 70:166−80

doi: 10.1016/j.ymben.2022.01.004
[19]

Ilg A, Bruno M, Beyer P, Al-Babili S. 2014. Tomato carotenoid cleavage dioxygenases 1A and 1B: Relaxed double bond specificity leads to a plenitude of dialdehydes, mono-apocarotenoids and isoprenoid volatiles. FEBS Open Bio 4:584−93

doi: 10.1016/j.fob.2014.06.005
[20]

Sun Q, Liu L, Zhang L, Lv H, He Q, et al. 2020. Melatonin promotes carotenoid biosynthesis in an ethylene-dependent manner in tomato fruits. Plant Science 298:110580

doi: 10.1016/j.plantsci.2020.110580
[21]

Tieman DM, Zeigler M, Schmelz EA, Taylor MG, Bliss P, et al. 2006. Identification of loci affecting flavour volatile emissions in tomato fruits. Journal of Experimental Botany 57:887−96

doi: 10.1093/jxb/erj074
[22]

Rohrmann J, Tohge T, Alba R, Osorio S, Caldana C, et al. 2011. Combined transcription factor profiling, microarray analysis and metabolite profiling reveals the transcriptional control of metabolic shifts occurring during tomato fruit development. Plant Journal for Cell & Molecular Biology 68:999−1013

doi: 10.1111/j.1365-313X.2011.04750.x
[23]

Tohge T, Scossa F, Wendenburg R, Frasse P, Balbo I, et al. 2020. Exploiting natural variation in tomato to define pathway structure and metabolic regulation of fruit polyphenolics in the lycopersicum complex. Molecular Plant 13:1027−46

doi: 10.1016/j.molp.2020.04.004
[24]

Olsen KM, Lea US, Slimestad R, Verheul M, Lillo C. 2008. Differential expression of four Arabidopsis PAL genes; PAL1 andPAL2 have functional specialization in abiotic environmental-triggered flavonoid synthesis. Journal of Plant Physiology 165:1491−99

doi: 10.1016/j.jplph.2007.11.005
[25]

Millar DJ, Long M, Donovan G, Fraser PD, Boudet AM, et al. 2007. Introduction of sense constructs of cinnamate 4-hydroxylase (CYP73A24) in transgenic tomato plants shows opposite effects on flux into stem lignin and fruit flavonoids. Phytochemistry 68:1497−509

doi: 10.1016/j.phytochem.2007.03.018
[26]

Nabavi SM, Šamec D, Tomczyk M, Milella L, Russo D, et al. 2020. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnology Advances 38:107316

doi: 10.1016/j.biotechadv.2018.11.005
[27]

Willits MG, Kramer CM, Prata RTN, de Luca V, Potter BG, et al. 2005. Utilization of the genetic resources of wild species to create a nontransgenic high flavonoid tomato. Journal of agricultural and food chemistry 53:1231−36

doi: 10.1021/jf049355i
[28]

Jones CM, Mes P, Myers JR. 2003. Characterization and inheritance of the Anthocyanin fruit (Aft) tomato. The Journal of Heredity 94:449−56

doi: 10.1093/jhered/esg093
[29]

Lim W, Li J. 2017. Synergetic effect of the Onion CHI gene on the PAP1 regulatory gene for enhancing the flavonoid profile of tomato skin. Scientific Reports 7:12377

doi: 10.1038/s41598-017-12355-x
[30]

Wolucka BA, van Montagu M. 2007. The VTC2 cycle and the de novo biosynthesis pathways for vitamin C in plants: an opinion. Phytochemistry 68:2602−13

doi: 10.1016/j.phytochem.2007.08.034
[31]

Agius F, González-Lamothe R, Caballero JL, Muñoz-Blanco J, Botella MA, et al. 2003. Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nature Biotechnology 21:177−81

doi: 10.1038/nbt777
[32]

Ishikawa T, Maruta T, Yoshimura K, Smirnoff N. 2018. Biosynthesis and Regulation of Ascorbic Acid in Plants. In Antioxidants and Antioxidant Enzymes in Higher Plants, eds. Gupta DK, Palma JM, Corpas FJ. Switzerland: Springer, Cham. pp. 163–79 https://doi.org/10.1007/978-3-319-75088-0_8

[33]

Massot C, Génard M, Stevens R, Gautier H. 2010. Fluctuations in sugar content are not determinant in explaining variations in vitamin C in tomato fruit. Plant Physiology and Biochemistry 48:751−57

doi: 10.1016/j.plaphy.2010.06.001
[34]

Ding F, Wang M, Zhang S. 2017. Overexpression of a Calvin cycle enzyme SBPase improves tolerance to chilling-induced oxidative stress in tomato plants. Scientia Horticulturae 214:27−33

doi: 10.1016/j.scienta.2016.11.010
[35]

Li J, Cui M, Li M, Wang X, Liang D, et al. 2013. Expression pattern and promoter analysis of the gene encoding GDP-D-mannose 3',5'-epimerase under abiotic stresses and applications of hormones by kiwifruit. Scientia Horticulturae 150:187−94

doi: 10.1016/j.scienta.2012.11.008
[36]

Bulley S, Wright M, Rommens C, Yan H, Rassam M, et al. 2012. Enhancing ascorbate in fruits and tubers through over-expression of the L-galactose pathway gene GDP-L-galactose phosphorylase. Plant Biotechnology Journal 10:390−97

doi: 10.1111/j.1467-7652.2011.00668.x
[37]

Foyer CH, Noctor G. 2011. Ascorbate and glutathione: the heart of the Redox Hub. Plant Physiology 155:2−18

doi: 10.1104/pp.110.167569
[38]

Mellidou I, Keulemans J, Kanellis AK, Davey MW. 2012. Regulation of fruit ascorbic acid concentrations during ripening in high and low vitamin C tomato cultivars. BMC Plant Biology 12:239

doi: 10.1186/1471-2229-12-239
[39]

Tieman D, Bliss P, McIntyre LM, Blandon-Ubeda A, Bies D, et al. 2012. The chemical interactions underlying tomato flavor preferences. Current Biology 22:1035−39

doi: 10.1016/j.cub.2012.04.016
[40]

Çolak NG, Eken NT, Ülger M, Frary A, Doğanlar S. 2020. Exploring wild alleles from Solanum pimpinellifolium with the potential to improve tomato flavor compounds. Plant Science 298:110567

doi: 10.1016/j.plantsci.2020.110567
[41]

Klee HJ, Giovannoni JJ. 2011. Genetics and control of tomato fruit ripening and quality attributes. Annual Review of Genetics 45:41−59

doi: 10.1146/annurev-genet-110410-132507
[42]

Matsukura C. 2016. Sugar Accumulation in Tomato Fruit and Its Modification Using Molecular Breeding Techniques. In Functional Genomics and Biotechnology in Solanaceae and Cucurbitaceae Crops. Biotechnology in Agriculture and Forestry, eds. Ezura H, Ariizumi T, Garcia-Mas J, Rose J. Heidelberg: Springer Berlin Heidelberg. pp. 141–54 https://doi.org/10.1007/978-3-662-48535-4_9

[43]

Nowicka B, Ciura J, Szymańska R, Kruk J. 2018. Improving photosynthesis, plant productivity and abiotic stress tolerance − current trends and future perspectives. Journal of Plant Physiology 231:415−33

doi: 10.1016/j.jplph.2018.10.022
[44]

Sturm A. 1999. Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiology 121:1−8

doi: 10.1104/pp.121.1.1
[45]

Nookaraju A, Upadhyaya CP, Pandey SK, Young KE, Hong SJ, et al. 2010. Molecular approaches for enhancing sweetness in fruits and vegetables. Scientia Horticulturae 127:1−15

doi: 10.1016/j.scienta.2010.09.014
[46]

Tang N, An J, Deng W, Gao Y, Chen Z, et al. 2020. Metabolic and transcriptional regulatory mechanism associated with postharvest fruit ripening and senescence in cherry tomatoes. Postharvest Biology and Technology 168:111274

doi: 10.1016/j.postharvbio.2020.111274
[47]

Anthon GE, LeStrange A, Barretta DM . 2011. Changes in pH, acids, sugars and other quality parameters during extended vine holding of ripe processing tomatoes. Journal of the Science of Food and Agriculture 91:1175−81

doi: 10.1002/jsfa.4312
[48]

Yao Y, Li M, Zhai H, You C, Hao Y. 2011. Isolation and characterization of an apple cytosolic malate dehydrogenase gene reveal its function in malate synthesis. Journal of Plant Physiology 168:474−80

doi: 10.1016/j.jplph.2010.08.008
[49]

Martínez-Esteso MJ, Sellés-Marchart S, Lijavetzky D, Pedreño MA, Bru-Martínez R. 2011. A DIGE-based quantitative proteomic analysis of grape berry flesh development and ripening reveals key events in sugar and organic acid metabolism. Journal of Experimental Botany 62:2521−69

doi: 10.1093/jxb/erq434
[50]

Etienne A, Génard M, Lobit P, Mbeguié-A-Mbéguié D, Bugaud C. 2013. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells Journal of Experimental Botany 64:1451−69

doi: 10.1093/jxb/ert035
[51]

Sweetman C, Deluc LG, Cramer GR, Ford CM, Soole KL. 2009. Regulation of malate metabolism in grape berry and other developing fruits. Phytochemistry 70:1329−44

doi: 10.1016/j.phytochem.2009.08.006
[52]

Muhammad Jawad U, Gao L, Gebremeskel H, Safdar LB, Yuan P, et al. 2020. Expression pattern of sugars and organic acids regulatory genes during watermelon fruit development. Scientia Horticulturae 265:109102

doi: 10.1016/j.scienta.2019.109102
[53]

Morgan MJ, Osorio S, Gehl B, Baxter CJ, Kruger NJ, et al. 2013. Metabolic engineering of tomato fruit organic acid content guided by biochemical analysis of an introgression line. Plant Physiology 161:397−407

doi: 10.1104/pp.112.209619
[54]

Goff SA, Klee HJ. 2006. Plant volatile compounds: sensory cues for health and nutritional value? Science 311:815−19

doi: 10.1126/science.1112614
[55]

Tieman D, Zhu G, Resende MFR Jr, Lin T, Nguyen C, et al. 2017. A chemical genetic roadmap to improved tomato flavor. Science 355:391−94

doi: 10.1126/science.aal1556
[56]

Chen G, Hackett R, Walker D, Taylor A, Lin Z, et al. 2004. Identification of a specific isoform of tomato lipoxygenase (TomloxC) involved in the generation of fatty acid-derived flavor compounds. Plant Physiology 136:2641−51

doi: 10.1104/pp.104.041608
[57]

Garbowicz K, Liu Z, Alseekh S, Tieman D, Taylor M, et al. 2018. Quantitative trait loci analysis identifies a prominent gene involved in the production of fatty acid-derived flavor volatiles in tomato. Molecular Plant 11:1147−65

doi: 10.1016/j.molp.2018.06.003
[58]

Tieman D, Taylor M, Schauer N, Fernie AR, Hanson AD, et al. 2006. Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. PNAS 103:8287−92

doi: 10.1073/pnas.0602469103
[59]

Tieman DM, Loucas HM, Kim JY, Clark DG, Klee HJ. 2007. Tomato phenylacetaldehyde reductases catalyze the last step in the synthesis of the aroma volatile 2-phenylethanol. Phytochemistry 68:2660−69

doi: 10.1016/j.phytochem.2007.06.005
[60]

Klee HJ. 2010. Improving the flavor of fresh fruits: genomics, biochemistry, and biotechnology. New Phytologist 187:44−56

doi: 10.1111/j.1469-8137.2010.03281.x
[61]

Bemer M, Karlova R, Ballester AR, Tikunov YM, Bovy AG, et al. 2012. The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening. The Plant Cell 24:4437−51

doi: 10.1105/tpc.112.103283
[62]

Cordoba E, Salmi M, León P. 2009. Unravelling the regulatory mechanisms that modulate the MEP pathway in higher plants. Journal of Experimental Botany 60:2933−43

doi: 10.1093/jxb/erp190
[63]

Lois LM, Rodriguez-Concepcion M, Gallego F, Campos N, Boronat A. 2010. Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase. The Plant Journal 22:503−13

doi: 10.1046/j.1365-313x.2000.00764.x
[64]

D’Andrea L, Simon-Moya M, Llorente B, Llamas E, Marro M, et al. 2018. Interference with Clp protease impairs carotenoid accumulation during tomato fruit ripening. Journal of Experimental Botany 69:1557−68

doi: 10.1093/jxb/erx491
[65]

Pulido P, Llamas E, Llorente B, Ventura S, Wright LP, et al. 2016. Specific Hsp100 Chaperones Determine the Fate of the First Enzyme of the Plastidial Isoprenoid Pathway for Either Refolding or Degradation by the Stromal Clp Protease in Arabidopsis. PLOS Genetics 12:e1005824

doi: 10.1371/journal.pgen.1005824
[66]

Meng C, Yang D, Ma X, Zhao W, Liang X, et al. 2016. Suppression of tomato SlNAC1 transcription factor delays fruit ripening. Journal of Plant Physiology 193:88−96

doi: 10.1016/j.jplph.2016.01.014
[67]

Zhu M, Chen G, Zhou S, Yun T, Wang Y, et al. 2014. A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. Plant & Cell Physiology 55:119−35

doi: 10.1093/pcp/pct162
[68]

Li Z, Peng R, Yao Q. 2021. SlMYB14 promotes flavonoids accumulation and confers higher tolerance to 2,4,6-trichlorophenol in tomato. Plant Science 303:110796

doi: 10.1016/j.plantsci.2020.110796
[69]

Ewas M, Gao Y, Ali F, Nishawy EM, Shahzad R, et al. 2017. RNA-seq reveals mechanisms of SlMX1 for enhanced carotenoids and terpenoids accumulation along with stress resistance in tomato. Science Bulletin, 2017. Science Bulletin 62:476−85

doi: 10.1016/j.scib.2017.03.018
[70]

Stanley L, Yuan YW. 2019. Transcriptional regulation of carotenoid biosynthesis in plants: so many regulators, so little consensus. Frontiers in Plant Science 10:1017

doi: 10.3389/fpls.2019.01017
[71]

Namitha KK, Negi PS. 2018. Agroinfiltration of phytoene desaturase and lycopene β-Cyclase genes from bacterial source in tomato (Solanum Lycopersicum L.) enhances nutritional and processing quality of its juice. Food Biotechnology 32:305−16

doi: 10.1080/08905436.2018.1519447
[72]

Stracke R, Favory JJ, Gruber H, Bartelniewoehner L, Bartels S, et al. 2010. The Arabidopsis bZIP transcription factor HY5 regulates expression of the PFG1/MYB12 gene in response to light and ultraviolet-B radiation. Plant, Cell & Environment 33:88−103

doi: 10.1111/j.1365-3040.2009.02061.x
[73]

Wang Y, Feng G, Zhang Z, Liu Y, Ma Y, et al. 2021. Overexpression of Pti4, Pti5, and Pti6 in tomato promote plant defense and fruit ripening. Plant Science 302:110702

doi: 10.1016/j.plantsci.2020.110702
[74]

Su X, Xu J, Rhodes D, Shen Y, Song W, et al. 2016. Identification and quantification of anthocyanins in transgenic purple tomato. Food Chemistry 202:184−88

doi: 10.1016/j.foodchem.2016.01.128
[75]

Vu AT and Lee JM. 2019. Genetic variations underlying anthocyanin accumulation in tomato fruits. Euphytica 215:196

doi: 10.1007/s10681-019-2519-x
[76]

Krishnatreya DB, Agarwala N, Gill SS, Bandyopadhyay T. 2021. Understanding the role of miRNAs for improvement of tea quality and stress tolerance. Journal of Biotechnology 328:34−46

doi: 10.1016/j.jbiotec.2020.12.019
[77]

Zhang W, Lorence A, Gruszewski HA, Chevone BI, Nessler CL. 2009. AMR1, an Arabidopsis Gene That Coordinately and Negatively Regulates the Mannose/L-Galactose Ascorbic Acid Biosynthetic Pathway. Plant Physiology 150:942−50

doi: 10.1104/pp.109.138453
[78]

Zhang Z, Wang J, Zhang R, Huang R. 2012. The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis. The Plant Journal 71:273−87

doi: 10.1111/j.1365-313X.2012.04996.x
[79]

Wang J, Thingholm LB, Skiecevičienė J, Rausch P, Kummen M, et al. 2016. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nature Genetics 48:1396−406

doi: 10.1038/ng.3695
[80]

Li J, Li M, Liang D, Ma F, Lei Y. 2014. Comparison of expression pattern, genomic structure, and promoter analysis of the gene encoding GDP-L-galactose phosphorylase from two Actinidia species. Scientia Horticulturae 169:206−13

doi: 10.1016/j.scienta.2014.02.024
[81]

Wang L, Meng X, Yang D, Ma N, Wang G, et al. 2014. Overexpression of tomato GDP-l-galactose phosphorylase gene in tobacco improves tolerance to chilling stress. Plant Cell Reports 33:1441−51

doi: 10.1007/s00299-014-1627-2
[82]

Laing WA, Martínez-Sánchez M, Wright MA, Bulley SM, Brewster D, et al. 2015. An upstream open reading frame is essential for feedback regulation of ascorbate biosynthesis in Arabidopsis. The Plant Cell 27:772−86

doi: 10.1105/tpc.114.133777
[83]

Jin Y, Ni D, Ruan Y. 2009. Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level. The Plant Cell 21:2072−89

doi: 10.1105/tpc.108.063719
[84]

Qin G, Zhu Z, Wang W, Cai J, Chen Y, et al. 2016. A Tomato Vacuolar Invertase Inhibitor Mediates Sucrose Metabolism and Influences Fruit Ripening. Plant Physiology 172:1596−611

doi: 10.1104/pp.16.01269
[85]

Hackel A, Schauer N, Carrari F, Fernie AR, Grimm B, et al. 2006. Sucrose transporter LeSUT1 and LeSUT2 inhibition affects tomato fruit development in different ways. The Plant Journal 45:180−92

doi: 10.1111/j.1365-313X.2005.02572.x
[86]

Wang X, Peng F, Li M, Yang L, Li G. 2012. Expression of a heterologous SnRK1 in tomato increases carbon assimilation, nitrogen uptake and modifies fruit development. Journal of Plant Physiology 169:1173−82

doi: 10.1016/j.jplph.2012.04.013
[87]

Lu S, Van Eck J, Zhou X, Lopez AB, O'Halloran DM, et al. 2006. The cauliflower or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of β-carotene accumulation. The Plant Cell 18:3594−605

doi: 10.1105/tpc.106.046417
[88]

Lin L, Yuan K, Huang Y, Dong H, Qiao Q, et al. 2022. A WRKY transcription factor PbWRKY40 from Pyrus betulaefolia functions positively in salt tolerance and modulating organic acid accumulation by regulating PbVHA-B1 expression. Environmental and Experimental Botany 196:104782

doi: 10.1016/j.envexpbot.2022.104782
[89]

Li S, Liu X, Xie X, Sun C, Grierson D, et al. 2015. CrMYB73, a PH-like gene, contributes to citric acid accumulation in citrus fruit. Scientia Horticulturae 197:212−17

doi: 10.1016/j.scienta.2015.09.037
[90]

Seymour GB, Poole M, Giovannoni JJ, Tucker GA. 2013. The Molecular Biology and Biochemistry of Fruit Ripening. New Jersey: John Wiley & Sons. pp. 135−55 https://doi.org/10.1002/9781118593714

[91]

Jaakola L. 2013. Phenylpropanoid Metabolism and Biosynthesis of Anthocyanins. In The Molecular Biology and Biochemistry of Fruit Ripening, eds. Seymour GB, Poole M, Giovannoni JJ, Tucker GA. New Jersey: John Wiley & Sons. pp. 117−34 https://doi.org/10.1002/9781118593714.ch5