[1] |
Abdin Z, Zafaranloo A, Rafiee A, Mérida W, Lipiński W, et al. 2020. Hydrogen as an energy vector. Renewable and Sustainable Energy Reviews 120:109630 doi: 10.1016/j.rser.2019.109620 |
[2] |
Abuadala A, Dincer I. 2012. A review on biomass-based hydrogen production and potential applications. International Journal of Energy Research 36:415−55 doi: 10.1002/er.1939 |
[3] |
Martin A, Agnoletti MF, Brangier E. 2020. Users in the design of Hydrogen Energy Systems: A systematic review. International Journal of Hydrogen Energy 45:11889−900 doi: 10.1016/j.ijhydene.2020.02.163 |
[4] |
Sun Z, Li G. 2015. On reliability and flexibility of sustainable energy application route for vehicles in China. Renewable and Sustainable Energy Reviews 51:830−46 doi: 10.1016/j.rser.2015.06.042 |
[5] |
Correa G, Muñoz PM, Rodriguez CR. 2019. A comparative energy and environmental analysis of a diesel, hybrid, hydrogen and electric urban bus. Energy 187:115906 doi: 10.1016/j.energy.2019.115906 |
[6] |
Winter CJ. 2009. Hydrogen energy — Abundant, efficient, clean: A debate over the energy-system-of-change. International Journal of Hydrogen Energy 34:S1−S52 doi: 10.1016/j.ijhydene.2009.05.063 |
[7] |
Sánchez AL, Williams FA. 2014. Recent advances in understanding of flammability characteristics of hydrogen. Progress in Energy and Combustion Science 41:1−55 doi: 10.1016/j.pecs.2013.10.002 |
[8] |
Mandelis A, Garcia JA. 1998. Pd/PVDF thin film hydrogen sensor based on laser-amplitude-modulated optical-transmittance: dependence on H2 concentration and device physics. Sensors and Actuators B: Chemical 49:258−67 doi: 10.1016/S0925-4005(98)00137-3 |
[9] |
Jeon GJ, Lee SH, Lee SH, Shim JB, Ra JH, et al. 2019. Highly sensitive active-matrix driven self-capacitive fingerprint sensor based on oxide thin film transistor. Scientific Reports 9:3216 doi: 10.1038/s41598-019-40005-x |
[10] |
Dryer FL, Chaos M, Zhao Z, Stein JN, Alpert JY, et al. 2007. Spontaneous ignition of pressurized releases of hydrogen and natural gas into air. Combustion Science and Technology 179:663−94 doi: 10.1080/00102200600713583 |
[11] |
Zheng J, Liu X, Xu P, Liu P, Zhao Y, et al. 2012. Development of high pressure gaseous hydrogen storage technologies. International Journal of Hydrogen Energy 37:1048−57 doi: 10.1016/j.ijhydene.2011.02.125 |
[12] |
Mironov VN, Penyazkov OG, Ignatenko DG. 2015. Self-ignition and explosion of a 13-MPa pressurized unsteady hydrogen jet under atmospheric conditions. International Journal of Hydrogen Energy 40:5749−62 doi: 10.1016/j.ijhydene.2015.02.021 |
[13] |
Bourgin E, Alves MM, Yang C, Fachini FF, Bauwens L. 2017. Effects of Lewis numbers and kinetics on spontaneous ignition of hydrogen jets. Proceedings of the Combustion Institute 36:2833−39 doi: 10.1016/j.proci.2016.06.175 |
[14] |
Kobayashi H, Naruo Y, Maru Y, Takesaki Y, Miyanabe K. 2018. Experiment of cryo-compressed (90-MPa) hydrogen leakage diffusion. International Journal of Hydrogen Energy 43:17928−37 doi: 10.1016/j.ijhydene.2018.07.145 |
[15] |
Liu C, Liao Y, Liang J, Cui Z, Li Y. 2021. Quantifying methane release and dispersion estimations for buried natural gas pipeline leakages. Process Safety and Environmental Protection 146:552−63 doi: 10.1016/j.psep.2020.11.031 |
[16] |
Shi K, Xiao S, Ruan Q, Wu H, Chen G, et al. 2022. Hydrogen permeation behavior and mechanism of multi-layered graphene coatings and mitigation of hydrogen embrittlement of pipe steel. Applied Surface Science 573:151529 doi: 10.1016/j.apsusc.2021.151529 |
[17] |
Dadfarnia M, Nagao A, Wang S, Martin ML, Somerday BP, et al. 2015. Recent advances on hydrogen embrittlement of structural materials. International Journal of Fracture 196:223−43 doi: 10.1007/s10704-015-0068-4 |
[18] |
Asadnia M, Mousavi Ehteshami SM, Chan SH, Warkiani ME. 2017. Development of a fiber-based membraneless hydrogen peroxide fuel cell. RSC Advances 7:40755−60 doi: 10.1039/C7RA08333E |
[19] |
Bailey A, Andrews L, Khot A, Rubin L, Young J, et al. 2015. Hydrogen storage experiments for an undergraduate laboratory course — clean energy: hydrogen/fuel cells. Journal of Chemical Education 92:688−92 doi: 10.1021/ed5006294 |
[20] |
Foorginezhad S, Mohseni-Dargah M, Falahati Z, Abbassi R, Razmjou A, et al. 2021. Sensing advancement towards safety assessment of hydrogen fuel cell vehicles. Journal of Power Sources 489:229450 doi: 10.1016/j.jpowsour.2021.229450 |
[21] |
Landucci G, Tugnoli A, Cozzani V. 2010. Safety assessment of envisaged systems for automotive hydrogen supply and utilization. International Journal of Hydrogen Energy 35:1493−505 doi: 10.1016/j.ijhydene.2009.11.097 |
[22] |
Liu W, Christopher DM. 2015. Dispersion of hydrogen leaking from a hydrogen fuel cell vehicle. International Journal of Hydrogen Energy 40:16673−82 doi: 10.1016/j.ijhydene.2015.10.026 |
[23] |
RaviPrakash J, McDaniel AH, Horn M, Pilione L, Sunal P, et al. 2007. Hydrogen sensors: Role of palladium thin film morphology. Sensors and Actuators B-Chemical 120:439−46 doi: 10.1016/j.snb.2006.02.050 |
[24] |
Buttner W, Rivkin C, Burgess R, Hartmann K, Bloomfield I, et al. 2017. Hydrogen monitoring requirements in the global technical regulation on hydrogen and fuel cell vehicles. International Journal of Hydrogen Energy 42:7664−71 doi: 10.1016/j.ijhydene.2016.06.053 |
[25] |
Shin J, Lee S, Jung K, Choi J. 2010. Optimization of EMC Management Plan for BOP(Balance of Plant) of Fuel Cell Electric Vehicle (FCEV). 2010 Asia-Pacific International Symposium on Electromagnetic Compatibility. Beijing, China, 2010. pp. 1435−38. China: IEEE. https://doi.org/10.1109/APEMC.2010.5475552 |
[26] |
Mulder G, De Ridder F, Coenen P, Weyen D, Martens A. 2008. Evaluation of an on-site cell voltage monitor for fuel cell systems. International Journal of Hydrogen Energy 33:5728−37 doi: 10.1016/j.ijhydene.2008.07.017 |
[27] |
Sakamoto J, Sato R, Nakayama J, Kasai N, Shibutani T, et al. 2016. Leakage-type-based analysis of accidents involving hydrogen fueling stations in Japan and USA. International Journal of Hydrogen Energy 41:21564−70 doi: 10.1016/j.ijhydene.2016.08.060 |
[28] |
Fuse M, Noguchi H, Seya H. 2021. Near-term location planning of hydrogen refueling stations in Yokohama City. International Journal of Hydrogen Energy 46:12272−79 doi: 10.1016/j.ijhydene.2020.09.199 |
[29] |
Gye HR, Seo SK, Bach QV, Ha D, Lee CJ. 2019. Quantitative risk assessment of an urban hydrogen refueling station. International Journal of Hydrogen Energy 44:1288−98 doi: 10.1016/j.ijhydene.2018.11.035 |
[30] |
Shirvill LC, Roberts TA, Royle M, Willoughby DB, Gautier T. 2012. Safety studies on high-pressure hydrogen vehicle refuelling stations: Releases into a simulated high-pressure dispensing area. International Journal of Hydrogen Energy 37:6949−64 doi: 10.1016/j.ijhydene.2012.01.030 |
[31] |
Wang X, Liu N. 2021. Research on the construction plan layout of the combined Hydrogen and CNG refueling station. 2021 5th International Conference on Advances in Energy, Environment and Chemical Science (AEECS 2021). Vol. 245: 01006. Webinar: E3S Web Conferene. https://doi.org/10.1051/e3sconf/202124501006 |
[32] |
Zheng J, Li L, Chen R, Xu P, Kai F. 2008. High pressure steel storage vessels used in hydrogen refueling station. Proceedings of ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference. Volume 5: High Pressure Technology, Nondestructive Evaluation, Pipeline Systems, Student Paper Competition, Vancouver, BC, Canada, 2006. Canada: ASME. pp. 23−29 https://doi.org/10.1115/PVP2006-ICPVT-11-93069 |
[33] |
Apostolou D, Xydis G. 2019. A literature review on hydrogen refuelling stations and infrastructure. Current status and future prospects. Renewable and Sustainable Energy Reviews 113:109292 doi: 10.1016/j.rser.2019.109292 |
[34] |
Castiglia F, Giardina M. 2013. Analysis of operator human errors in hydrogen refuelling stations: Comparison between human rate assessment techniques. International Journal of Hydrogen Energy 38:1166−76 doi: 10.1016/j.ijhydene.2012.10.092 |
[35] |
Li Z, Pan X, Sun K, Zhou W, Gao D, et al. 2014. Development of safety standard for mobile hydrogen refueling facilities in China. International Journal of Hydrogen Energy 39:13935−39 doi: 10.1016/j.ijhydene.2014.02.017 |
[36] |
Interstandard (Russia). 2014. GOST R 55891 : 2013. Gaseous Hydrogen And Hydrogen Blends - Land Vehicle Fuel Tanks. https://infostore.saiglobal.com/en-au/Standards/Product-Details-546763_SAIG_GOST_GOST_1250329/?ProductID=546763_SAIG_GOST_GOST_1250329 |
[37] |
Chen K, Yuan D, Zhao Y. 2021. Review of optical hydrogen sensors based on metal hydrides: Recent developments and challenges. Optics & Laser Technology 137:106808 doi: 10.1016/j.optlastec.2020.106808 |
[38] |
Samerjai T, Liewhiran C, Wisitsoraat A, Tuantranont A, Khanta C, et al. 2014. Highly selective hydrogen sensing of Pt-loaded WO3 synthesized by hydrothermal/impregnation methods. International Journal of Hydrogen Energy 39:6120−28 doi: 10.1016/j.ijhydene.2014.01.184 |
[39] |
Shim JY, Lee JD, Jin JM, Cheong H, Lee SH. 2009. Pd-Pt alloy as a catalyst in gasochromic thin films for hydrogen sensors. Solar Energy Materials and Solar Cells 93:2133−37 doi: 10.1016/j.solmat.2009.01.004 |
[40] |
Zhang Y-n, Wu Q, Peng H, Zhao Y. 2016. Photonic crystal fiber modal interferometer with Pd/WO3 coating for real-time monitoring of dissolved hydrogen concentration in transformer oil. The Review of Scientific Instruments 87:125002 doi: 10.1063/1.4971321 |
[41] |
Butler MA. 1984. Optical fiber hydrogen sensor. Applied Physics Letters 45:1007 doi: 10.1063/1.95060 |
[42] |
Akiba H, Kobayashi H, Kitagawa H, Kofu M, Yamamuro O. 2015. Glass transition and positional ordering of hydrogen in bulk and nanocrystalline palladium. Physical Review B 92:64202 doi: 10.1103/physrevb.92.064202 |
[43] |
Gu F, Wu G, Zeng H. 2015. Hybrid photon-plasmon Mach-Zehnder interferometers for highly sensitive hydrogen sensing. Nanoscale 7:924−29 doi: 10.1039/C4NR06642A |
[44] |
Butler MA, Ginley DS. 1988. Hydrogen sensing with palladium-coated optical fibers. Journal of Applied Physics 64:3706−12 doi: 10.1063/1.341414 |
[45] |
Zeakes JS, Murphy KA, Elshabini-Riad A, Claus RO. 1994. Modified extrinsic Fabry-Perot interferometric hydrogen gas sensor. Proceedings of Lasers & Electro-optics Society Meeting 1994 (LEOS'94), Boston, MA, USA, 1994. Vol. 2: 235−36. USA: IEEE https://doi.org/10.1109/LEOS.1994.586465 |
[46] |
Maciak E, Opilski Z. 2007. Transition metal oxides covered Pd film for optical H2 gas detection. Thin Solid Films 515:8351−8355 doi: 10.1016/j.tsf.2007.03.022 |
[47] |
Wang M, Yang M, Cheng J, Dai J, Yang M, et al. 2012. Femtosecond laser fabricated micro Mach-Zehnder interferometer with Pd film as sensing materials for hydrogen sensing. Optics Letters 37:1940−42 doi: 10.1364/OL.37.001940 |
[48] |
Kim YH, Lee C, Kwon JH, Lee YT, Lee BH. High finesse interferometric hydrogen sensor based on fiber-optic Fabry-Perot cavity modulations. OFS2012 22nd International Conference on Optical Fiber Sensor, 2012, Beijing, China. Vol. 8421. China: SPIE https://doi.org/10.1117/12.975120 |
[49] |
Xu B, Li P, Wang DN, Zhao C, Dai J, et al. 2017. Hydrogen sensor based on polymer-filled hollow core fiber with Pt-loaded WO3/SiO2 coating. Sensors and Actuators B: Chemical 245:516−23 doi: 10.1016/j.snb.2017.01.206 |
[50] |
Liu Y, Zhang N, Li P, Bi S, Zhang X, et al. 2019. Nanopatterned evanescent-field fiber-optic interferometer as a versatile platform for gas sensing. Sensors and Actuators B: Chemical 301:127136 doi: 10.1016/j.snb.2019.127136 |
[51] |
Butler MA. 1991. Fiber optic sensor for hydrogen concentrations near the explosive limit. Journal of the Electrochemical Society 138:L46−L47 doi: 10.1149/1.2086073 |
[52] |
Jung CC, Saaski EW, Mccrae DA. 1998. Fiber optic hydrogen sensor. Proceedings of fourth pacific northwest fiber optic sensor workshop, Troutdale, OR, United States, 1998, vol. 3489. USA: SPIE https://doi.org/10.1117/12.323426 |
[53] |
Bévenot X, Trouillet A, Veillas C, Gagnaire H, Clément M. 2000. Hydrogen leak detection using an optical fibre sensor for aerospace applications. Sensors and Actuators B: Chemical 67:57−67 doi: 10.1016/S0925-4005(00)00407-X |
[54] |
Westerwaal RJ, Rooijmans JSA, Leclercq L, Gheorghe DG, Radeva T, et al. 2013. Nanostructured Pd-Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures. International Journal of Hydrogen Energy 38:4201−12 doi: 10.1016/j.ijhydene.2012.12.146 |
[55] |
Bévenot X, Trouillet A, Veillas C, Gagnaire H, Clément M. 2002. Surface plasmon resonance hydrogen sensor using an optical fibre. Measurement Science and Technology 13:118−24 doi: 10.1088/0957-0233/13/1/315 |
[56] |
Tabib-Azar M, Sutapun B, Petrick R, Kazemi AA. 1999. Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions. Sensors and Actuators B: Chemical 56:158−63 doi: 10.1016/S0925-4005(99)00177-X |
[57] |
Sekimoto S, Nakagawa H, Okazaki S, Fukuda K, Asakura S, et al. 2000. A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide. Sensors and Actuators B: Chemical 66:142−45 doi: 10.1016/S0925-4005(00)00330-0 |
[58] |
Villatoro J, Diez A, Cruz JL, Andres MV. 2003. In-line highly sensitive hydrogen sensor based on palladium-coated single-mode tapered fibers. IEEE Sensors Journal 3:533−37 doi: 10.1109/JSEN.2003.815789 |
[59] |
Villatoro J, Luna-Moreno D, Monzón-Hernández D. 2005. Optical fiber hydrogen sensor for concentrations below the lower explosive limit. Sensors and Actuators B: Chemical 110:23−27 doi: 10.1016/j.snb.2005.01.009 |
[60] |
Monzón-Hernández D, Luna-Moreno D, Escobar DM, Villatoro J. 2010. Optical microfibers decorated with PdAu nanoparticles for fast hydrogen sensing. Sensors and Actuators B: Chemical 151:219−22 doi: 10.1016/j.snb.2010.09.018 |
[61] |
Li J, Fan R, Hu H, Yao C. 2018. Hydrogen sensing performance of silica microfiber elaborated with Pd nanoparticles. Materials Letters 212:211−13 doi: 10.1016/j.matlet.2017.10.095 |
[62] |
Chadwick B, Gal M. 1993. Enhanced optical detection of hydrogen using the excitation of surface plasmons in palladium. Applied Surface Science 68:135−38 doi: 10.1016/0169-4332(93)90222-W |
[63] |
Perrotton C, Javahiraly N, Slaman M, Dam B, Meyrueis P. 2011. Fiber optic Surface Plasmon Resonance sensor based on wavelength modulation for hydrogen sensing. Optics Express 19:A1175−A1183 doi: 10.1364/OE.19.0A1175 |
[64] |
Wang X, Tang Y, Zhou C, Liao B. 2013. Design and optimization of the optical fiber surface plasmon resonance hydrogen sensor based on wavelength modulation. Optics Communications 298−299:88−94 doi: 10.1016/j.optcom.2013.01.054 |
[65] |
Hosoki A, Nishiyama M, Igawa H, Seki A, Watanabe K. 2014. A hydrogen curing effect on surface plasmon resonance fiber optic hydrogen sensors using an annealed Au/Ta2O5/Pd multi-layers film. Optics Express 22:18556−63 doi: 10.1364/OE.22.018556 |
[66] |
Beni T, Yamasaku N, Kurotsu T, To N, Okazaki S, et al. 2019. Metamaterial for Hydrogen Sensing. ACS Sensors 4:2389−94 doi: 10.1021/acssensors.9b00980 |
[67] |
Wei X, Wei T, Xiao H, Lin YS. 2008. Nano-structured Pd-long period fiber gratings integrated optical sensor for hydrogen detection. Sensors and Actuators B: Chemical 134:687−93 doi: 10.1016/j.snb.2008.06.018 |
[68] |
Sutapun B, Tabib-Azar M, Kazemi A. 1999. Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing. Sensors and Actuators B: Chemical 60:27−34 doi: 10.1016/S0925-4005(99)00240-3 |
[69] |
Aleixandre M, Corredera P, Hernanz ML, Gutierrez-Monreal J. 2005. Development of fiber optic hydrogen sensors for testing nuclear waste repositories. Sensors and Actuators B: Chemical 107:113−20 doi: 10.1016/j.snb.2004.11.100 |
[70] |
Trouillet A, Marin E, Veillas C. 2005. Fibre gratings for hydrogen sensing. 17th International Conference on Optical Fibre Sensors, Bruges, Belgium, 2005, vol. 5855: 395−98. USA: SPIE https://doi.org/10.1117/12.623648 |
[71] |
Schroeder K, Ecke W, Willsch R. 2009. Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer. Optics and Lasers in Engineering 47:1018−22 doi: 10.1016/j.optlaseng.2009.04.002 |
[72] |
Yan H, Zhao X, Zhang C, Li Q, Cao J, et al. 2016. A fast response hydrogen sensor with Pd metallic grating onto a fiber's end-face. Optics Communications 359:157−61 doi: 10.1016/j.optcom.2015.09.041 |