[1]

Dai W, Qi D, Yang T, Lv H, Guo L, et al. 2015. Nontargeted analysis using ultraperformance liquid chromatography–quadrupole time-of-flight mass spectrometry uncovers the effects of harvest season on the metabolites and taste quality of tea (Camellia sinensis L.). Journal of Agricultural and Food Chemistry 63:9869−78

doi: 10.1021/acs.jafc.5b03967
[2]

Zhang L, Tai Y, Wang Y, Meng Q, Yang Y, et al. 2017. The proposed biosynthesis of procyanidins by the comparative chemical analysis of five Camellia species using LC-MS. Scientific Reports 7:46131

doi: 10.1038/srep46131
[3]

Chen L, Yu F, Tong Q. 2000. Discussion on phylogenetic classification and evolution of Sect. Thea. Journal of Tea Sciences 20:89−94

doi: 10.13305/j.cnki.jts.2000.02.003
[4]

Yu F. 2016. Ancient Tea Plants in China. Kunming: Yunnan Science and Technology Press. pp. 33

[5]

Liu Y, Zhao G, Li X, Shen Q, Wu Q, et al. 2020. Comparative analysis of phenolic compound metabolism among tea plants in the section Thea of the genus Camellia. Food Research International 135:109276

doi: 10.1016/j.foodres.2020.109276
[6]

Teng J, Yan C, Zeng W, Zhang Y, Zeng Z, et al. 2020. Purification and characterization of theobromine synthase in a theobromine-enriched wild tea plant (Camellia gymnogyna Chang) from Dayao Mountain, China. Food Chemistry 311:125875

doi: 10.1016/j.foodchem.2019.125875
[7]

Wildermuth MC. 2006. Variations on a theme: synthesis and modification of plant benzoic acids. Current Opinion in Plant Biology 9:288−96

doi: 10.1016/j.pbi.2006.03.006
[8]

Liu Z, Bruins ME, de Bruijn WJC, Vincken JP. 2020. A comparison of the phenolic composition of old and young tea leaves reveals a decrease in flavanols and phenolic acids and an increase in flavonols upon tea leaf maturation. Journal of Food Composition and Analysis 86:103385

doi: 10.1016/j.jfca.2019.103385
[9]

Fan K, Zhang Q, Liu M, Ma L, Shi Y, et al. 2019. Metabolomic and transcriptional analyses reveal the mechanism of C, N allocation from source leaf to flower in tea plant (Camellia sinensis L). Journal of Plant Physiology 232:200−8

doi: 10.1016/j.jplph.2018.11.007
[10]

Jiang H, Yu F, Qin L, Zhang N, Cao Q, et al. 2019. Dynamic change in amino acids, catechins, alkaloids, and gallic acid in six types of tea processed from the same batch of fresh tea (Camellia sinensis L.) leaves. Journal of Food Composition and Analysis 77:28−38

doi: 10.1016/j.jfca.2019.01.005
[11]

Meinhart AD, Caldeirão L, Damin FM, Filho JT, Godoy HT. 2018. Analysis of chlorogenic acids isomers and caffeic acid in 89 herbal infusions (tea). Journal of Food Composition and Analysis 73:76−82

doi: 10.1016/j.jfca.2018.08.001
[12]

Lee VSY, Dou J, Chen RJY, Lin RS, Lee MR, et al. 2008. Massive accumulation of gallic acid and unique occurrence of myricetin, quercetin, and kaempferol in preparing old oolong tea. Journal of Agricultural and Food Chemistry 56:7950

doi: 10.1021/jf801688b
[13]

Meng X, Li N, Zhu H, Wang D, Yang C, et al. 2019. Plant resources, chemical constituents, and bioactivities of tea plants from the genus Camellia section Thea. Journal of Agricultural and Food Chemistry 67:5318−49

doi: 10.1021/acs.jafc.8b05037
[14]

Hao W, Ma J, Ma C, Jin J, Chen L. 2019. The complete chloroplast genome sequence of Camellia tachangensis F. C. Zhang (Theaceae). Mitochondrial DNA Part B: Resources 4:3344−45

doi: 10.1080/23802359.2019.1673247
[15]

Gao D, Zhang Y, Yang C, Chen K, Jiang H. 2009. Phenolic antioxidants from green tea produced from Camellia crassicolumna var. multiplex. Journal of Agricultural and Food Chemistry 57:586−90

doi: 10.1021/jf802974m
[16]

Zhu B, Chen L, Lu M, Zhang J, Han J, et al. 2019. Caffeine content and related gene expression: novel insight into caffeine metabolism in Camellia plants containing low, normal, and high caffeine concentrations. Journal of Agricultural and Food Chemistry 67:3400−11

doi: 10.1021/acs.jafc.9b00240
[17]

Yang C, Zhang Y, Gao D, Chen K, Jiang H. 2008. The evaluation of Camellia taliensis resources and the origin of cultivated large-leave tea plant. Tea science and Technology 3:1−4

[18]

Zhang H. 1984. A revision on the tea resource plants. Acta Scientiarum Naturalium Universitatis Sunyatseni 23:3−14

[19]

Gao D, Zhang Y, Yang C, Chen K, Jiang H. 2008. Phenolic Antioxidants from green tea produced from Camellia taliensis. Journal of Agricultural and Food Chemistry 56:7517−21

doi: 10.1021/jf800878m
[20]

Yan Z, Huang J, Wang D. 2020. Research progress in natural theobromine-enriched tea plants. Guangdong Agricultural Sciences 47:37−44

[21]

Zhu W, Xu J, Ge Y, Cao H, Ge X, et al. 2014. Epigallocatechin-3-gallate (EGCG) protects skin cells from ionizing radiation via heme oxygenase-1 (HO-1) overexpression. Journal of Radiation Research 55:1056−65

doi: 10.1093/jrr/rru047
[22]

Cai J, Jozwiak A, Holoidovsky L, Meijler MM, Meir S, et al. 2021. Glycosylation of N-hydroxy-pipecolic acid equilibrates between systemic acquired resistance response and plant growth. Molecular Plant 14:440−55

doi: 10.1016/j.molp.2020.12.018
[23]

Li D, Wang J, Liu Y, Li Y, Zhang Z. 2021. Expanded analyses of the functional correlations within structural classifications of glycoside hydrolases. Computational and Structural Biotechnology Journal 19:5931−42

doi: 10.1016/j.csbj.2021.10.039
[24]

Cao S, Zhang M, Yuan M, Yang D, Zhao M, et al. 2022. The pharmaceutical excipient PEG400 affect the absorption of baicalein in Caco-2 monolayer model by interacting with UDP-glucuronosyltransferases and efflux transport proteins. Pharmacology research & perspectives 10:e00928

doi: 10.1002/prp2.928
[25]

Zhu J, Xu Q, Zhao S, Xia X, Yan X, et al. 2020. Comprehensive co-expression analysis provides novel insights into temporal variation of flavonoids in fresh leaves of the tea plant (Camellia sinensis). Plant Science 290:110306

doi: 10.1016/j.plantsci.2019.110306
[26]

Wu C, Xu H, Héritier J, Andlauer W. 2012. Determination of catechins and flavonol glycosides in Chinese tea varieties. Food Chemistry 32:144−49

doi: 10.1016/j.foodchem.2011.10.045
[27]

Dai W, Tan J, Lu M, Xie D, Li P, et al. 2016. Nontargeted modification-specific metabolomics investigation of glycosylated secondary metabolites in tea (Camellia sinensis L.) based on liquid chromatography-high resolution mass spectrometry. Journal of Agricultural and Food Chemistry 64:6783−90

doi: 10.1021/acs.jafc.6b02411
[28]

Li X, Liu G, Zhang W, Zhou YL, Ling T, et al. 2018. Novel flavoalkaloids from white tea with inhibitory activity against the formation of advanced glycation end products. Journal of Agricultural and Food Chemistry 66:4621−29

doi: 10.1021/acs.jafc.8b00650