[1]

Tan Q, Wang W, Wei YR, Zheng SF, Huang XY, et al. 2019. Diversity analysis of fruit traits related to yield in Macadamia germplasms. Journal of Fruit Science 36:1630−37

doi: 10.13925/j.cnki.gsxb.20190087
[2]

Wall MM. 2010. Functional lipid characteristics, oxidative stability, and antioxidant activity of macadamia nut (Macadamia integrifolia) cultivars. Food Chemistry 121:1103−8

doi: 10.1016/j.foodchem.2010.01.057
[3]

Birch J, Yap K, Silcock P. 2010. Compositional analysis and roasting behaviour of gevuina and macadamia nuts. International Journal of Food Science and Technology 45:81−86

doi: 10.1111/j.1365-2621.2009.02106.x
[4]

Maguire LS, O'Sullivan SM, Galvin K, O'Connor TP, O'Brien NM. 2004. Fatty acid profile, tocopherol, squalene and phytosterol content of walnuts, almonds, peanuts, hazelnuts and the macadamia nut. International Journal of Food Sciences and Nutrition 55:171−78

doi: 10.1080/09637480410001725175
[5]

Garg ML, Blake RJ, Wills RBH. 2003. Macadamia nut consumption lowers plasma total and LDL cholesterol levels in hypercholesterolemic men. The Journal of Nutrition 133:1060−63

doi: 10.1093/jn/133.4.1060
[6]

Garg ML, Blake RJ, Wills RBH, Clayton EH. 2007. Macadamia nut consumption modulates favourably risk factors for coronary artery disease in hypercholesterolemic subjects. Lipids 42:583−87

doi: 10.1007/s11745-007-3042-8
[7]

Liu J, Huang L. 2005. The nutritional value of macadamia and its development and utilization. Food and Nutrition in China 2:25−26

doi: 10.3969/j.issn.1006-9577.2005.02.008
[8]

Tu X, Zhang X, Liu Y, Du L, Huang M, et al. 2015. Study on the technology of activated carbon pre paration of microwave irradiation of macadamia shell. Science and Technology of Food Industry 36:253−59

doi: 10.13386/j.issn1002-0306.2015.20.045
[9]

Geng J, Tao L, Yue H, Li Z, He X. 2021. Review on Comprehensive Utilization of Macadamia Nutshell. Tropical Agricultural Science & Technology 38:41−47

[10]

Nock CJ, Hardner CM, Montenegro JD, Termizi AAA, Batley J. 2019. Wild origins of macadamia domestication identified through intraspecific chloroplast genome sequencing. Frontiers in Plant Science 10:334

doi: 10.3389/fpls.2019.00334
[11]

Topp BL, Nock CJ, Hardner CM, Alam M, O'Connor, et KM. 2019. Macadamia (Macadamia spp.) breeding. In Advances in Plant Breeding Strategies: Nut and Beverage Crops, eds. Al-Khayri J, Jain S, Johnson D. Switzerland: Springer International Publishing. pp. 221–51 https://doi.org/10.1007/978-3-030-23112-5_7

[12]

Nock CJ, Baten A, Mauleon R, Langdon KS, Topp B, et al. 2020. Chromosome-scale assembly and annotation of the Macadamia genome (Macadamia integrifolia HAES 741). G3 Genes|Genomes|Genetics 10:3497−3504

doi: 10.1534/g3.120.401326
[13]

Stace HM, Douglas AW, Sampson JF. 1998. Did 'Paleo-polyploidy' Really occur in Proteaceae? Australian Systematic Botany 11:613−29

doi: 10.1071/SB98013
[14]

Nock CJ, Elphinstone MS, Ablett G, Kawamata A, Hancock W, et al. 2014. Whole genome shotgun sequences for microsatellite discovery and application in cultivated and wild Macadamia (Proteaceae). Applications in Plant Sciences 2:1300089

doi: 10.3732/apps.1300089
[15]

Nock CJ, Baten A, Barklaet BJ, Furtadoal A, Henry RJ, et al. 2016. Genome and transcriptome sequencing characterises the gene space of Macadamia integrifolia (Proteaceae). BMC Genomics 17:937

doi: 10.1186/s12864-016-3272-3
[16]

Lin J, Zhang W, Zhang X, Ma X, Zhang S, et al. 2022. Signatures of selection in recently domesticated macadamia. Nature Communications 13:242

doi: 10.1038/s41467-021-27937-7
[17]

Akoh CC, Lee GC, Liaw YC, Huang TH, Shaw JF. 2004. GDSL family of serine esterases/lipases. Progress in Lipid Research 43:534−52

doi: 10.1016/j.plipres.2004.09.002
[18]

Chepyshko H, Lai CP, Huang LM, Huang LM, Liu JH, Shaw JF. 2012. Multifunctionality and diversity of GDSL esterase/lipase gene family in rice (Oryza sativa L. japonica) genome: New insights from bioinformatics analysis. BMC Genomics 13:309−27

doi: 10.1186/1471-2164-13-309
[19]

Otto SP. 2007. The evolutionary consequences of polyploidy. Cell 131:452−62

doi: 10.1016/j.cell.2007.10.022
[20]

Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, et al. 1999. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research 27:29−34

doi: 10.1093/nar/27.1.29
[21]

Belser C, Istace B, Denis E, Dubarry M, Baurens FC, et al. 2018. Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. Nature Plants 4:879−87

doi: 10.1038/s41477-018-0289-4
[22]

Jain M, Koren S, Miga KH, Quick J, Rand AC, et al. 2018. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nature Biotechnology 36:338−45

doi: 10.1038/nbt.4060
[23]

Takahashi K, Shimada T, Kondo M, Tamai A, Mori M, et al. 2009. Ectopic expression of an esterase, which is a candidate for the unidentified plant cutinase, causes cuticular defects in Arabidopsis thaliana. Plant and Cell Physiology 51:123−31

doi: 10.1093/pcp/pcp173
[24]

Dong X, Yi H, Han CT, Nou IS, Hur Y. 2016. GDSL esterase/lipase genes in Brassica rapa L.: genome-wide identification and expression analysis. Molecular Genetics and Genomics 291:531−42

doi: 10.1007/s00438-015-1123-6
[25]

Kim GK, Kwon SJ, Jang YJ, Chung JH, Nam MH, et al. 2014. GDSL lipase 1 regulates ethylene signaling and ethylene-associated systemic immunity in Arabidopsis. FEBS Letters 588:1652−58

doi: 10.1016/j.febslet.2014.02.062
[26]

Ding L, Guo X, Li M, Fu Z, Yan S, et al. 2018. Improving seed germination and oil contents by regulating the GDSL transcriptional level in Brassica napus. Plant Cell Reports 38:243−53

doi: 10.1007/s00299-018-2365-7
[27]

Ling H. 2008. Sequence analysis of GDSL lipase gene family in Arabidopsis thaliana. Pakistan Journal of Biological Sciences 11:763−67

doi: 10.3923/pjbs.2008.763.767
[28]

Porebski S, Bailey LG, Baum BR. 1997. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter 15:8−15

doi: 10.1007/BF02772108
[29]

Pryszcz LP, Gabaldón T. 2016. Redundans: an assembly pipeline for highly heterozygous genomes. Nucleic Acids Research 44:e113

doi: 10.1093/nar/gkw294
[30]

Hu J, Fan J, Sun Z, Liu S. 2019. NextPolish: a fast and efficient genome polishing tool for long-read assembly. Bioinformatics 36:2253−55

doi: 10.1093/bioinformatics/btz891
[31]

Alonge M, Soyk S, Ramakrishnan S, Wang X, Goodwin S, et al. 2019. RaGOO: fast and accurate reference-guided scaffolding of draft genomes. Genome Biology 20:224

doi: 10.1186/s13059-019-1829-6
[32]

Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210−12

doi: 10.1093/bioinformatics/btv351
[33]

Stanke M, Keller O, Gunduz I, Hayes A, Waack S, ea tl. 2006. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Research 34:W435−W439

doi: 10.1093/nar/gkl200
[34]

Cantarel BL, Korf I, Robb SMC, Parra G, Ross E, ea tl. 2008. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Research 18:188−96

doi: 10.1101/gr.6743907
[35]

Li L, Stoeckert SC Jr., Roos DS. 2003. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Research 13:2178−89

doi: 10.1101/gr.1224503
[36]

Price MN, Dehal PS, Arkin A. 2010. PFastTree 2 - approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490

doi: 10.1371/journal.pone.0009490
[37]

Kumar S, Stecher G, Suleski M, Hedges SB. 2017. TimeTree: a resource for timelines, timetrees, and divergence times. Molecular Biology and Evolution 7:1812−19

doi: 10.1093/molbev/msx116
[38]

Wang Y, Tang H, DeBarry JD, Tan X, Li J, et al. 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research 40:e49

doi: 10.1093/nar/gkr1293
[39]

Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24:1586−91

doi: 10.1093/molbev/msm088
[40]

Ni P, Ji X, Guo D. 2020. Genome-wide identification, characterization, and expression analysis of GDSL-type esterases/lipases gene family in relation to grape berry ripening. Scientia Horticulturae 264:109162

doi: 10.1016/j.scienta.2019.109162
[41]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant1194−202

doi: 10.1016/j.molp.2020.06.009