[1] |
Du X, Zhao Y, He X, Meng C, Guo C, et al. 2018. Research status of bamboo flowering. Physiology. Journal of Bamboo Research 37(3):7−11 |
[2] |
Yan J. 2021. Introduction, identification and application evaluation of OT series lily new varieties. Modern Agricultural Science and Technology 2:120−31 |
[3] |
Bian X. 2019. Study on the molecular regulatory mechanism of phase change in the nutritional phase of lily bulbs and related gene mining. Thesis. Beijing Agricultural College, Beijing. |
[4] |
Huijser P, Schmid M. 2011. The control of developmental phase transitions in plants. Development 138:4117−29 doi: 10.1242/dev.063511 |
[5] |
Yoshikawa T, Ozawa S, Sentoku N, Itoh JI, Nagato Y, et al. 2013. Change of shoot architecture during juvenile-to-adult phase transition in soybean. Planta 238:229−37 doi: 10.1007/s00425-013-1895-z |
[6] |
Yu S, Cao L, Zhou C, Zhang T, Lian H, et al. 2013. Sugar is an endogenous cue for juvenile-to-adult phase transition in plants. eLife 2:e00269 doi: 10.7554/eLife.00269 |
[7] |
Wang B, Lin G, Song H, Chen R, Lan T. 2017. The role of SBP-box/SPL genes in the formation and development of trichomes in plants. Journal of Fujian Agriculture and Forestry University (Natural Science Edition) 46:121−28 doi: 10.13323/j.cnki.j.fafu(nat.sci.).2017.02.001 |
[8] |
Sun Y, Cha Y, Weng X, Zhu M, Han N. 2012. Regulatory role of small molecule RNAs in plant leaf development. Chinese Journal of Biochemistry and Molecular Biology 28:700−5 doi: 10.13865/j.cnki.cjbmb.2012.08.008 |
[9] |
Yi S, Yang R, Zeng Y. 2015. Overview of research methods for plant miRNAs. Journal of Plant Physiology 51:413−23 doi: 10.13592/j.cnki.ppj.2014.0570 |
[10] |
Ye B, Zhang K, Wang J. 2020. The role of miR156 in rejuvenation in Arabidopsis thaliana. Journal of Integrative Plant Biology 62:550−55 doi: 10.1111/jipb.12855 |
[11] |
Axtell MJ, Bowman JL. 2008. Evolution of plant microRNAs and their targets. Trends in Plant Science 13:343−349 doi: 10.1016/j.tplants.2008.03.009 |
[12] |
Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, et al. 2002. Prediction of plant microRNA targets. Cell 110(4):513−520 doi: 10.1016/S0092-8674(02)00863-2 |
[13] |
Du F, Li X, Xu S, Yuan Y, Chang L, et al. 2018. Study on the genetic diversity and classification analysis of Lilium cultivars. Journal of Shanxi Agricultural University (Natural Science Edition) 38:16−22 doi: 10.13842/j.cnki.issn1671-8151.201801010 |
[14] |
Xie K, Wu C, Xiong L. 2006. Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiology 142:280−93 doi: 10.1104/pp.106.084475 |
[15] |
Fu C, Sunkar R, Zhou C, Shen H, Zhang JY, et al. 2012. Overexpression of miR156 in switchgrass (Panicum virgatum L. ) results in various morphological alterations and leads to improved biomass production. Plant Biotechnology Journal 10:443−452 doi: 10.1111/j.1467-7652.2011.00677.x |
[16] |
Zhang X, Zou Z, Zhang J, Zhang Y, Han Q, et al. 2011. Over-expression of sly-miR156a in tomato results in multiple vegetative and reproductive trait alterations and partial phenocopy of the sft mutant. FEBS Letters 585:435−439 doi: 10.1016/j.febslet.2010.12.036 |
[17] |
Shikata M, Yamaguchi H, Sasaki K, Ohtsubo N. 2012. Overexpression of Arabidopsis miR157b induces bushy architecture and delayed phase transition inTorenia fournieri. Planta 236:1027−35 doi: 10.1007/s00425-012-1649-3 |
[18] |
Wei Q, Ma C, Xu Y, Wang T, Chen Y, et al. 2017. Control of chrysanthemum flowering through integration with an aging pathway. Nature Communications 8−829 doi: 10.1038/s41467-017-00812-0 |
[19] |
Wu G, Park MY, Conway SR, Wang JW, Weigel D, et al. 2009. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750−59 doi: 10.1016/j.cell.2009.06.031 |
[20] |
Jiang Y, Peng J, Wang M, Su W, Gan X, et al. 2019. The role of EjSPL3, EjSPL4, EjSPL5 and EjSPL9 in regulating flowering in loquat (Eriobotrya japonica Lindl.). International Journal of Molecular sciences 21:248 doi: 10.3390/ijms21010248 |
[21] |
Zhu L, Liang S, Chen L, Wu C, Wei W, et al. 2020. Banana MaSPL16 modulates carotenoid biosynthesis during fruit ripening through activating the transcription of lycopene β-cyclase genes. Journal of Agricultural and Food Chemistry 68:1286−96 doi: 10.1021/acs.jafc.9b07134 |
[22] |
Schwarz S, Grande AV, Bujdoso N, Saedler H, Huijser P. 2008. The microRNA regulated SBP-box gene SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Molecular Biology 67:183−95 doi: 10.1007/s11103-008-9310-z |
[23] |
Kim JJ, Lee JH, Kim W, Jung HS, Huijser P, et al. 2012. The microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-like3 module regulates ambient temperature responsive flowering via FLOWERING LOCUS T in Arabidopsis. Plant Physiology 159:461−78 doi: 10.1104/pp.111.192369 |
[24] |
Xu M, Hu T, Zhao J, Park MY, Earley KW, et al. 2016. Developmental functions miR156-regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes in Arabidopsis thaliana |
[25] |
Wu G, Poethig RS. 2006. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133:3539−47 doi: 10.1242/dev.02521 |
[26] |
Cao D, Li Y, Wang J, Nan H, Wang Y, et al. 2015. GmmiR156b overexpression delays flowering time in soybean. Plant Molecular Biology 89:353−63 doi: 10.1007/s11103-015-0371-5 |
[27] |
Wang S, Li S, Liu Q, Wu K, Zhang J, et al. 2015. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nature Genetics 47:949−54 doi: 10.1038/ng.3352 |
[28] |
Zhang H, Liang X, Shi J. 2021. Cloning and expression analysis of LbSPL6 gene in Lycium barbarum. Northwest Journal of Botany 41:377−85 |
[29] |
Fouracre JP, He J, Chen VJ, Sidoli S, Poethig RS. 2021. VAL genes regulate vegetative phase change via miR156-dependent and independent mechanisms. PLoS Genetics 17:e1009626 doi: 10.1371/journal.pgen.1009626 |
[30] |
Qi Y, Wang L, Wang Y, Pu G, Liu Q, et al. 2019. Function and mech anism of WRKY transcription factors of plants under abiotic stress. Molecular Plant Breed 17:5973−79 doi: 10.13271/j.mpb.017.005973 |
[31] |
Mishra D, Shekhar S, Chakraborty S, Chakraborty N. 2021. Wheat 2-Cys peroxiredoxin plays a dual role in chlorophyll biosynthesis and adaptation to high temperature. Plant Journal 105:1374−89 doi: 10.1111/tpj.15119 |
[32] |
Yu S, Galvão VC, Zhang Y, Horrer D, Zhang T, et al. 2012. Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA PROMOTER BINDING-LIKE transcription factors. The Plant Cell 24:3320−32 doi: 10.1105/tpc.112.101014 |
[33] |
Yue E, Tao H, Xu J. 2021. Genome-wide analysis of microRNA156 and its targets, the genes encoding SQUAMOSA promoter-binding protein-like (SPL) transcription factors, in the grass family Poaceae. Journal of Zhejiang University-SCIENCE B 22:366−82 doi: 10.1631/jzus.B2000519 |
[34] |
Usami T, Horiguchi G, Yano S, Tsukaya H. 2009. The more and smaller cells mutants of Arabidopsis thaliana |
[35] |
Jorgensen SA, Preston JC. 2014. Differential SPL gene expression patterns reveal candidate genes underlying flowering time and architectural differences in Mimulus and Arabidopsis. Molecular Phylogenetics & Evolution 73:129−39 doi: 10.1016/j.ympev.2014.01.029 |
[36] |
Li X, Lin E, Huang H, Niu M, Tong Z, et al. 2018. Molecular characterization ofSQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) gene family in Betula luminifera. Frontiers in Plant Science 9:608 doi: 10.3389/fpls.2018.00608 |
[37] |
Sieber P, Wellmer F, Gheyselinck J, Riechmann JL, Meyerowitz EM. 2007. Redundancy and specialization among plant microRNAs: role of the miR164 family in developmental robustness. Development 134:1051−60 doi: 10.1242/dev.02817 |
[38] |
Samad AFA, Sajad M, Nazaruddin N, Fauzi IA, Murad AMA, et al. 2017. MicroRNA and transcription factor: key players in plant regulatory network. Frontiers in Plant Science 8:565 doi: 10.3389/fpls.2017.00565 |
[39] |
Kim JH, Woo HR, Kim J, Lim PO, Lee IC, et al. 2009. Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 323:1053−57 doi: 10.1126/science.1166386 |
[40] |
Fan T, Li X, Yang W, Xia K, Ouyang J, et al. 2015. Rice Osa-miR171c mediates phase change from vegetative to reproductive development and shoot apical meristem maintenance by repressing four OsHAM transcription factors. PLoS One 10:e0125833 doi: 10.1371/journal.pone.0125833 |
[41] |
Palatnik JF, Wollmann H, Schommer C, Schwab R, Boisbouvier J, et al. 2007. Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs: miR159 and miR319. Developmental Cell 13:115−25 doi: 10.1016/j.devcel.2007.04.012 |
[42] |
Fan D, Ran L, Hu J, Ye X, Xu D, et al. 2020. miR319a/TCP module and DELLA protein regulate trichome initiation synergistically and improve insect defenses in Populus tomentosa. The New Phytologist 227:867−83 doi: 10.1111/nph.16585 |
[43] |
Cao J, Zhao B, Huang C, Chen Z, Zhao T, et al. 2020. The miR319-targeted GhTCP4 promotes the transition from cell elongation to wall thickening in cotton fiber. Molecular Plant 13:1063−77 doi: 10.1016/j.molp.2020.05.006 |
[44] |
Schommer C, Palatnik JF, Aggarwal P, Chételat A, Cubas P, et al. 2008. Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biology 6:e230 doi: 10.1371/journal.pbio.0060230 |
[45] |
Wang Y, Li J. 2011. Branching in rice. Current Opinion in Plant Biology 14:94−99 doi: 10.1016/j.pbi.2010.11.002 |
[46] |
Yu Y, Ni Z, Wang Y, Wan H, Hu Z, et al. 2019. Overexpression of soybean miR169c confers increased drought stress sensitivity in transgenic Arabidopsis thaliana. Plant science: an international journal of experimental plant biology 285:68−78 doi: 10.1016/j.plantsci.2019.05.003 |
[47] |
Aukerman MJ, Sakai H. 2003. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15:2730−41 doi: 10.1105/tpc.016238 |
[48] |
Rao S, Li Y, Chen J. 2021. Combined analysis of microRNAs and target genes revealed miR156-SPLs and miR172-AP2 are involved in a delayed flowering phenomenon after chromosome doubling in black goji (Lycium ruthencium). Frontiers in Genetics 12:706930 doi: 10.3389/fgene.2021.706930 |
[49] |
Langens-Gerrits M, De-Klerk GJ, Croes A. 2003. Phase change in lily bulblets regenerated in vitro. Physiologia Plantarum 119:590−97 doi: 10.1046/j.1399-3054.2003.00214.x |
[50] |
Zhang X, Wang S, Qiu Z, Zeng Q. 2021. Identification and expression analysis of miR171a and its target genes in alpine pine. Jiangsu Agricultural Science 49:62−66 |
[51] |
Aung B, Gruber MY, Amyot L, Omari K, Bertrand A, et al. 2015. microRNA156 as a promising tool for alfalfa improvement. Plant Biotechnology Journal 13:779−90 doi: 10.1111/pbi.12308 |
[52] |
Sun H, Yang Y, Lou Y, Li L, Zhao H, et al. 2017. Genome-wide identification and expression analysis of the SBP transcription factor gene of Phyllostachys edulis. Genomics and Applied Biology 36(10):4263−74 doi: 10.13417/j.gab.036.004263 |
[53] |
Yang G, Dong J, Li M, Wang G, Yu W, et al. 2019. Identification and expression analysis of the ginkgo SQUAMOSA promoter binding protein (SBP) gene family. Plant Physiology Journal 55:993−1003 doi: 10.13592/j.cnki.ppj.2019.0125 |
[54] |
Cui Y, Feng Y, Chen Z, Wang X, Wang Y, et al. 2019. Cloning and functional characterization of ZmSPL16, a maize transcription factor. Molecular Plant Breeding 17:6583−89 doi: 10.13271/j.mpb.017.006583 |
[55] |
Chen W, Jin J, Lou H, Liu L, Kochian LV, et al. 2018. LeSPL-CNR negatively regulates Cd acquisition through repressing nitrate reductase-mediated nitric oxide production in tomato. Planta 248:893−907 doi: 10.1007/s00425-018-2949-z |
[56] |
Gong Y, 2020. Functional study of TaSPL17 gene from wheat SPL family regulating panicle development. Thesis. Harbin Normal University, Harbin. |
[57] |
Wang D, Mo X, Zhang X, Xu M, Zhang L, et al. 2018. Cloning and functional analysis of transcription factors gene Zmbhlh4 from Zea mays. Journal of Agricultural Science and Technology 20:16−25 |
[58] |
He C, Yang Q, Liu H, Yin S. 2018. Cloning, subcellular localization and expression analysis of PpSPL4 gene in Poa pratensis. Molecular Plant Breeding 16:3135−45 doi: 10.13271/j.mpb.016.003135 |