[1]

Koshani R, Jafari SM, van de Ven TGM. 2020. Going deep inside bioactive-loaded nanocarriers through nuclear magnetic resonance (NMR) spectroscopy. Trends in Food Science & Technology 101:198−212

doi: 10.1016/j.jpgs.2020.05.010
[2]

Ramakrishnan V, Luthria DL. 2017. Recent applications of NMR in food and dietary studies. Journal of the Science of Food and Agriculture 97:33−42

doi: 10.1002/jsfa.7917
[3]

García-García AB, Lamichhane S, Castejón D, Cambero MI, Bertram HC. 2018. 1H HR-MAS NMR-based metabolomics analysis for dry-fermented sausage characterization. Food chemistry 240:514−23

doi: 10.1016/j.foodchem.2017.07.150
[4]

Aursand IG, Erikson U, Veliyulin E. 2010. Water properties and salt uptake in Atlantic salmon fillets as affected by ante-mortem stress, rigor mortis, and brine salting: a low-field 1H NMR and 1H/23Na MRI study. Food chemistry 120:482−89

doi: 10.1016/j.foodchem.2009.10.041
[5]

Sørland GH, Larsen PM, Lundby F, Rudi AP, Guiheneuf T. 2004. Determination of total fat and moisture content in meat using low field NMR. Meat Science 66:543−50

doi: 10.1016/S0309-1740(03)00157-8
[6]

Pearce KL, Rosenvold K, Andersen HJ, Hopkins DL. 2011. Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes—a review. Meat Science 89:111−24

doi: 10.1016/j.meatsci.2011.04.007
[7]

Antequera T, Caballero D, Grassi S, Uttaro B, Perez-Palacios T. 2021. Evaluation of fresh meat quality by hyperspectral imaging (HSI), nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI): a review. Meat Science 172:108340

doi: 10.1016/j.meatsci.2020.108340
[8]

Santos ADC, Fonseca FA, Lião LM, Alcantara GB, Barison A. 2015. High-resolution magic angle spinning nuclear magnetic resonance in foodstuff analysis. TrAC Trends in Analytical Chemistry 73:10−18

doi: 10.1016/j.trac.2015.05.003
[9]

Shumilina E, Dykyy A, Dikiy A. 2018. Development of a statistical model to detect quality and storage conditions of Atlantic salmon. Food chemistry 258:381−86

doi: 10.1016/j.foodchem.2018.03.045
[10]

Aursand M, Grasdalen H. 1992. Interpretation of the 13C-NMR spectra of omega-3 fatty acids and lipid extracted from the white muscle of Atlantic salmon (Salmo salar). Chemistry and physics of lipids 62:239−51

doi: 10.1016/0009-3084(92)90061-S
[11]

Watanabe H, Fukuoka M, Tomiya A, Mihori T. 2001. A new non-Fickian diffusion model for water migration in starchy food during cooking. Journal of Food Engineering 49:1−6

doi: 10.1016/S0260-8774(00)00175-8
[12]

Bertram HC, Rasmussen M, Busk H, Oksbjerg N, Karlsson AH, et al. 2002. Changes in porcine muscle water characteristics during growth—an in vitro low-field NMR relaxation study. Journal of Magnetic Resonance 157:267−76

doi: 10.1006/jmre.2002.2600
[13]

Sánchez-Alonso I, Martinez I, Sánchez-Valencia J, Careche M. 2012. Estimation of freezing storage time and quality changes in hake (Merluccius merluccius, L. ) by low field NMR. Food chemistry 135:1626−34

doi: 10.1016/j.foodchem.2012.06.038
[14]

Sánchez-Alonso I, Moreno P, Careche M. 2014. Low field nuclear magnetic resonance (LF-NMR) relaxometry in hake (Merluccius merluccius, L. ) muscle after different freezing and storage conditions. Food chemistry 153:250−57

doi: 10.1016/j.foodchem.2013.12.060
[15]

Galvosas P, Brox TI, Kuczera S. 2019. Rheo-NMR in food science — recent opportunities. Magnetic Resonance in Chemistry 57:757−65

doi: 10.1002/mrc.4861
[16]

Mitchell J, Gladden LF, Chandrasekera TC, Fordham EJ. 2014. Low-field permanent magnets for industrial process and quality control. Progress in nuclear magnetic resonance spectroscopy 76:1−60

doi: 10.1016/j.pnmrs.2013.09.001
[17]

Greiff K, Fuentes A, Aursand IG, Erikson U, Masot R, et al. 2014. Innovative nondestructive measurements of water activity and the content of salts in low-salt hake minces. Journal of Agricultural and Food Chemistry 62:2496−2505

doi: 10.1021/jf405527t
[18]

da Silva Carneiro C, Mársico ET, Ribeiro RdOR, Conte-Júnior CA, Mano SB, et al. 2016. Low-field nuclear magnetic resonance (LF NMR 1H) to assess the mobility of water during storage of salted fish (Sardinella brasiliensis). Journal of Food Engineering 169:321−325

doi: 10.1016/j.jfoodeng.2015.09.010
[19]

Shao J, Deng Y, Song L, Batur A, Jia N, et al. 2016. Investigation the effects of protein hydration states on the mobility water and fat in meat batters by LF-NMR technique. LWT-Food Science and Technology 66:1−6

doi: 10.1016/j.lwt.2015.10.008
[20]

Frydman L, Scherf T, Lupulescu A. 2002. The acquisition of multidimensional NMR spectra within a single scan. PNAS 99:15858−62

doi: 10.1073/pnas.252644399
[21]

Bertram HC, Aaslyng MD, Andersen HJ. 2005. Elucidation of the relationship between cooking temperature, water distribution and sensory attributes of pork – a combined NMR and sensory study. Meat Science 70:75−81

doi: 10.1016/j.meatsci.2004.12.002
[22]

Pereira FMV, Colnago LA. 2012. Determination of the moisture content in beef without weighing using benchtop time-domain nuclear magnetic resonance spectrometer and chemometrics. Food Analytical Methods 5:1349−1353

doi: 10.1007/s12161-012-9383-9
[23]

Jakes W, Gerdova A, Defernez M, Watson AD, McCallum C, et al. 2015. Authentication of beef versus horse meat using 60 MHz 1H NMR spectroscopy. Food chemistry 175:1−9

doi: 10.1016/j.foodchem.2014.11.110
[24]

Liu C, Pan D, Ye Y, Cao J. 2013. 1H NMR and multivariate data analysis of the relationship between the age and quality of duck meat. Food chemistry 141:1281−1286

doi: 10.1016/j.foodchem.2013.03.102
[25]

Renou J, Foucat L, Bonny JM. 2003. Magnetic resonance imaging studies of water interactions in meat. Food chemistry 82:35−39

doi: 10.1016/S0308-8146(02)00582-4
[26]

Li M, Li B, Zhang W. 2018. Rapid and non-invasive detection and imaging of the hydrocolloid-injected prawns with low-field NMR and MRI. Food chemistry 242:16−21

doi: 10.1016/j.foodchem.2017.08.086
[27]

Shaarani SM, Nott KP, Hall LD. 2006. Combination of NMR and MRI quantitation of moisture and structure changes for convection cooking of fresh chicken meat. Meat Science 72:398−403

doi: 10.1016/j.meatsci.2005.07.017
[28]

Guo L, Yu B, Wang S, Zhu Y, Li P, et al. 2019. Effect of ripening with Penicillium roqueforti on texture, microstructure, water distribution and volatiles of chicken breast meat. International Journal of Food Science & Technology 54:1550−57

doi: 10.1111/ijfs.14019
[29]

Straadt IK, Rasmussen M, Andersen HJ, Bertram HC. 2007. Aging-induced changes in microstructure and water distribution in fresh and cooked pork in relation to water-holding capacity and cooking loss – a combined confocal laser scanning microscopy (CLSM) and low-field nuclear magnetic resonance relaxation study. Meat Science 75:687−95

doi: 10.1016/j.meatsci.2006.09.019
[30]

Herrero AM, Cambero MI, Ordóñez JA, Castejón D, Romero de Avila MD, et al. 2007. Magnetic resonance imaging, rheological properties, and physicochemical characteristics of meat systems with fibrinogen and thrombin. Journal of agricultural and food chemistry 55:9357−9364

doi: 10.1021/jf072132i
[31]

Tan C, Huang Y, Feng J, Li Z, Cai S. 2018. Freshness assessment of intact fish via 2D 1H J-resolved NMR spectroscopy combined with pattern recognition methods. Sensors and Actuators B: Chemical 255:348−56

doi: 10.1016/j.snb.2017.08.060
[32]

Kodani Y, Miyakawa T, Komatsu T, Tanokura M. 2017. NMR-based metabolomics for simultaneously evaluating multiple determinants of primary beef quality in Japanese black cattle. Scientific Reports 7:1297

doi: 10.1038/s41598-017-01272-8
[33]

Li Y, Li M, Zhao G, Zhang Q, Liu Y, et al. 2013. Effects of freeze-thaw cycle on quality of chicken flesh and bones. Journal of Henan Agricultural University 2013:187−91

[34]

Li W, Wang P, Xu X, Xing T, Zhou G. 2014. Use of low-field nuclear magnetic resonance to characterize water properties in frozen chicken breasts thawed under high pressure. European Food Research and Technology 239:183−88

doi: 10.1007/s00217-014-2189-9
[35]

Keun HC, Athersuch TJ. 2011. Nuclear magnetic resonance (NMR)-based metabolomics. In Metabolic Profiling, ed. Metz TO. New York: Humana Press, Springer. pp: 321−34 https://doi.org/10.1007/978-1-61737-985-7_19

[36]

Esteki M, Shahsavari Z, Simal-Gandara J. 2018. Use of spectroscopic methods in combination with linear discriminant analysis for authentication of food products. Food Control 91:100−12

doi: 10.1016/j.foodcont.2018.03.031
[37]

Wang H, Wang R, Song Y, Kamal T, Lv Y, et al. 2018. A fast and non-destructive LF-NMR and MRI method to discriminate adulterated shrimp. Journal of Food Measurement and Characterization 12:1340−49

doi: 10.1007/s11694-018-9748-x
[38]

Sacco D, Brescia MA, Buccolieri A, Jambrenghi AC. 2005. Geographical origin and breed discrimination of Apulian lamb meat samples by means of analytical and spectroscopic determinations. Meat Science 71:542−48

doi: 10.1016/j.meatsci.2005.04.038
[39]

Straadt IK, Aaslyng MD, Bertram HC. 2011. Assessment of meat quality by NMR — an investigation of pork products originating from different breeds. Magnetic Resonance in Chemistry 49:S71−S78

doi: 10.1002/mrc.2805
[40]

Ritota M, Casciani L, Failla S, Valentini M. 2012. HRMAS-NMR spectroscopy and multivariate analysis meat characterisation. Meat Science 92:754−61

doi: 10.1016/j.meatsci.2012.06.034
[41]

Straadt IK, Aaslyng MD, Bertram HC. 2014. An NMR-based metabolomics study of pork from different crossbreeds and relation to sensory perception. Meat Science 96:719−28

doi: 10.1016/j.meatsci.2013.10.006
[42]

Tan Z, Reyes-Suarez E, Indrasena W, Kralovec JA. 2017. Novel approach to study fish oil oxidation using 1H nuclear magnetic resonance spectroscopy. Journal of Functional Foods 36:310−16

doi: 10.1016/j.jff.2017.06.050
[43]

Gai S, Zhang Z, Zou Y, Liu D. 2019. Rapid and non-destructive detection of water-injected pork using low-field nuclear magnetic resonance (LF-NMR) and magnetic resonance imaging (MRI). International Journal of Food Engineering 15:20180313

doi: 10.1515/ijfe-2018-0313
[44]

Jung Y, Lee J, Kwon J, Lee KS, Ryu DH, et al. 2010. Discrimination of the geographical origin of beef by 1H NMR-based metabolomics. Journal of agricultural and food chemistry 58:10458−66

doi: 10.1021/jf102194t
[45]

Masoum S, Malabat C, Jalali-Heravi M, Guillou C, Rezzi S, et al. 2007. Application of support vector machines to 1H NMR data of fish oils: methodology for the confirmation of wild and farmed salmon and their origins. Analytical and bioanalytical chemistry 387:1499−510

doi: 10.1007/s00216-006-1025-x
[46]

Graham S, Kennedy T, Chevallier O, Gordon A, Farmer L, et al. 2010. The application of NMR to study changes in polar metabolite concentrations in beef longissimus dorsi stored for different periods post mortem. Metabolomics 6:395−404

doi: 10.1007/s11306-010-0206-y
[47]

Li X, Wei X, Wang H, Zhang C, Mehmood W. 2018. Relationship between protein denaturation and water holding capacity of pork during postmortem ageing. Food biophysics 13:18−24

doi: 10.1007/s11483-017-9507-2
[48]

Wang X, Geng L, Xie J, Qian Y. 2018. Relationship between water migration and quality changes of yellowfin tuna (Thunnus albacares) during storage at 0 °C and 4 °C by LF-NMR. Journal of aquatic food product technology 27:35−47

doi: 10.1080/10498850.2017.1400630
[49]

Wang X, Xie J, Qian Y. 2020. A non-invasive method for quantitative monitoring of quality changes and water migration in bigeye tuna (Thunnus obesus) during simulated cold chain logistics using low-field nuclear magnetic resonance coupled with PCA. Food Science and Technology International 26:475−484

doi: 10.1177/1082013220903148
[50]

Gudjonsdottir M, Gunnlaugsson VN, Finnbogadottir GA, Sveinsdottir K, Magnusson H, et al. 2010. Process control of lightly salted wild and farmed Atlantic cod (Gadus morhua) by brine injection, brining, and freezing — a low field NMR study. Journal of food science 75:E527−E536

doi: 10.1111/j.1750-3841.2010.01808.x
[51]

Cheng S, Wang X, Li R, Yang H, Wang H, et al. 2019. Influence of multiple freeze-thaw cycles on quality characteristics of beef semimembranous muscle: with emphasis on water status and distribution by LF-NMR and MRI. Meat Science 147:44−52

doi: 10.1016/j.meatsci.2018.08.020
[52]

Cheng S, Wang X, Yang H, Lin R, Wang H, et al. 2020. Characterization of moisture migration of beef during refrigeration storage by low-field NMR and its relationship to beef quality. Journal of the Science of Food and Agriculture 100:1940−1948

doi: 10.1002/jsfa.10206
[53]

Gedarawatte STG, Ravensdale JT, Johns ML, Azizi A, Al-Salami H, et al. 2020. Effectiveness of bacterial cellulose in controlling purge accumulation and improving physicochemical, microbiological, and sensorial properties of vacuum-packaged beef. Journal of food science 85:2153−2163

doi: 10.1111/1750-3841.15178
[54]

Bianchi M, Capozzi F, Cremonini MA, Laghi L, Petracci M, et al. 2004. Influence of the season on the relationships between NMR transverse relaxation data and water-holding capacity of turkey breast meat. Journal of the Science of Food and Agriculture 84:1535−1540

doi: 10.1002/jsfa.1808
[55]

Yang Y, Ye Y, Wang Y, Sun Y, Pan D, et al. 2018. Effect of high pressure treatment on metabolite profile of marinated meat in soy sauce. Food chemistry 240:662−69

doi: 10.1016/j.foodchem.2017.08.006
[56]

Stefanova R, Vasilev NV, Vassilev NG. 2011. 1H-NMR spectroscopy as an alternative tool for the detection of γ-ray irradiated meat. Food Analytical Methods 4:399−403

doi: 10.1007/s12161-010-9183-z
[57]

Jaturasitha S, Srikanchai T, Kreuzer M, Wicke M. 2008. Differences in carcass and meat characteristics between chicken indigenous to northern Thailand (Black-boned and Thai native) and imported extensive breeds (Bresse and Rhode Island Red). Poultry science 87:160−69

doi: 10.3382/ps.2006-00398
[58]

Nestor G, Bankefors J, Schlechtriem C, Brännäs E, Pickova J, et al. 2010. High-resolution 1H magic angle spinning NMR spectroscopy of intact Arctic char (Salvelinus alpinus) muscle. Quantitative analysis of n-3 fatty acids, EPA and DHA. Journal of agricultural and food chemistry 58:10799−10803

doi: 10.1021/jf103338j
[59]

Nakashima Y. 2020. Development of a hand-held magnetic resonance sensor for the nondestructive quantification of fat and lean meat of fresh tuna. Journal of Food Measurement and Characterization 14:2947−55

doi: 10.1007/s11694-020-00539-5
[60]

Lolli V, Marseglia A, Palla G, Zanardi E, Caligiani A. 2018. Determination of cyclopropane fatty acids in food of animal origin by 1H NMR. Journal of Analytical Methods in Chemistry 2018:8034042

doi: 10.1155/2018/8034042
[61]

Zanardi E, Caligiani A, Padovani E, Mariani M, Ghidini S, et al. 2013. Detection of irradiated beef by nuclear magnetic resonance lipid profiling combined with chemometric techniques. Meat Science 93:171−77

doi: 10.1016/j.meatsci.2012.08.018
[62]

Santos PM, Corrêa CC, Forato LA, Tullio RR, Cruz GM, et al. 2014. A fast and non-destructive method to discriminate beef samples using TD-NMR. Food Control 38:204−8

doi: 10.1016/j.foodcont.2013.10.026
[63]

Ojha KS, Kerry JP, Tiwari BK. 2017. Investigating the influence of ultrasound pre-treatment on drying kinetics and moisture migration measurement in Lactobacillus sakei cultured and uncultured beef jerky. LWT - Food Science and Technology 81:42−49

doi: 10.1016/j.lwt.2017.03.011
[64]

Keeton JT, Hafley BS, Eddy SM, Moser CR, McManus BJ, et al. 2003. Rapid determination of moisture and fat in meats by microwave and nuclear magnetic resonance analysis. Journal of AOAC International 86:1193−202

doi: 10.1093/jaoac/86.6.1193
[65]

Leffler TP, Moser CR, McManus BJ, Urh JJ, Keeton JT, et al. 2008. Determination of moisture and fat in meats by microwave and nuclear magnetic resonance analysis: collaborative study. Journal of AOAC International 91:802−10

doi: 10.1093/jaoac/91.4.802
[66]

Fan L, Ruan D, Shen J, Hu Z, Liu C, et al. 2022. The role of water and oil migration in juiciness loss of stuffed fish ball with the fillings of pig fat/meat as affected by freeze-thaw cycles and cooking process. LWT 159:113244

doi: 10.1016/j.lwt.2022.113244
[67]

Zanardi E, Caligiani A, Palla L, Mariani M, Ghidini S, et al. 2015. Metabolic profiling by 1H NMR of ground beef irradiated at different irradiation doses. Meat Science 103:83−89

doi: 10.1016/j.meatsci.2015.01.005
[68]

Siciliano C. 2021. A rapid NMR-based approach for the direct determination of lipid oxidation metabolites in dry fermented cured Italian sausages containing α-tocopherol. Journal of Physics: Conference Series 1960:012006

doi: 10.1088/1742-6596/1960/1/012006
[69]

El Sabbagh N, Bonny JM, Clerjon S, Chassain C, Pagés G. 2022. Characterization of the sodium binding state in several food products by 23Na NMR spectroscopy. Magnetic Resonance in Chemistry 60:597−605

doi: 10.1002/mrc.5250
[70]

Pajuelo A, Sánchez S, Pérez-Palacios T, Caballero D, Díaz J, et al. 2022. 1H-NMR to analyse the lipid profile in the glyceride fraction of different categories of Iberian dry-cured hams. Food chemistry 383:132371

doi: 10.1016/j.foodchem.2022.132371
[71]

García-García AB, Herrera A, Fernández-Valle ME, Cambero MI, Castejón D. 2019. Evaluation of e-beam irradiation and storage time in pork exudates using NMR metabolomics. Food Research International 120:553−59

doi: 10.1016/j.foodres.2018.11.005
[72]

Steinsholm S, Oterhals Å, Underhaug J, Måge I, Malmendal A, et al. 2020. Sensory assessment of fish and chicken protein hydrolysates. Evaluation of NMR metabolomics profiling as a new prediction tool. Journal of agricultural and food chemistry 68:3881−90

doi: 10.1021/acs.jafc.9b07828
[73]

Micklander E, Peshlov B, Purslow PP, Engelsen SB. 2002. NMR-cooking: monitoring the changes in meat during cooking by low-field 1H-NMR. Trends in Food Science & Technology 13:341−46

doi: 10.1016/S0924-2244(02)00163-2
[74]

Jia G, Liu H, Nirasawa S, Liu H. 2017. Effects of high-voltage electrostatic field treatment on the thawing rate and post-thawing quality of frozen rabbit meat. Innovative Food Science & Emerging Technologies 41:348−56

doi: 10.1016/j.ifset.2017.04.011
[75]

Venturi L, Rocculi P, Cavani C, Placucci G, Rosa MD, et al. 2007. Water absorption of freeze-dried meat at different water activities: a multianalytical approach using sorption isotherm, differential scanning calorimetry, and nuclear magnetic resonance. Journal of agricultural and food chemistry 55:10572−78

doi: 10.1021/jf072874b