[1]

Thangaraj K, Cheng L, Deng C, Deng W, Zhang Z. 2019. First report of leaf blight caused by Arthrinium arundinis on tea plants in china. Plant Disease 103:3282−83

doi: 10.1094/pdis-06-19-1324-pdn
[2]

Drew L. 2019. The growth of tea. Nature 566:S2−S4

doi: 10.1038/d41586-019-00395-4
[3]

Lei X, Wang Y, Zhou Y, Chen Y, Chen H, et al. 2021. TeaPGDB: tea plant genome database. Beverage Plant Research 1:5

doi: 10.48130/bpr-2021-0005
[4]

Xia EH, Tong W, Wu Q, Wei S, Zhao J, et al. 2020. Tea plant genomics: achievements, challenges and perspectives. Horticulture Research 7:7

doi: 10.1038/s41438-019-0225-4
[5]

Zhang K, Ren T, Liao J, Wang S, Zou Z, et al. 2021. Targeted metabolomics reveals dynamic changes during the manufacturing process of Yuhua tea, a stir-fried green tea. Beverage Plant Research 1:6

doi: 10.48130/bpr-2021-0006
[6]

Jiang H, Yu F, Qin L, Zhang N, Cao Q, et al. 2019. Dynamic change in amino acids, catechins, alkaloids, and gallic acid in six types of tea processed from the same batch of fresh tea (Camellia sinensis L. ) leaves. Journal of Food Composition and Analysis 77:28−38

doi: 10.1016/j.jfca.2019.01.005
[7]

Zhu J, He Y, Yan X, Liu L, Guo R, et al. 2019. Duplication and transcriptional divergence of three Kunitz protease inhibitor genes that modulate insect and pathogen defenses in tea plant (Camellia sinensis). Horticulture Research 6:126

doi: 10.1038/s41438-019-0208-5
[8]

Sun J, Qiu C, Ding Y, Wang Y, Sun L, et al. 2020. Fulvic acid ameliorates drought stress-induced damage in tea plants by regulating the ascorbate metabolism and flavonoids biosynthesis. BMC Genomics 21:411

doi: 10.1186/s12864-020-06815-4
[9]

Zhang X, Wu H, Chen J, Chen L, Wan X. 2020. Chloride and amino acids are associated with K+-alleviated drought stress in tea (Camellia sinesis). Functional Plant Biology 47:398−408

doi: 10.1071/FP19221
[10]

Chen W, Zheng C, Yao M, Chen L. 2021. The tea plant CsWRKY26 promotes drought tolerance in transgenic Arabidopsis plants. Beverage Plant Research 1:3

doi: 10.48130/bpr-2021-0003
[11]

Zhao M, Wang L, Wang J, Jin Y, Zhang N, et al. 2020. Induction of priming by cold stress via inducible volatile cues in neighboring tea plants. Journal of Integrative Plant Biology 62:1461−68

doi: 10.1111/jipb.12937
[12]

Zhao M, Zhang N, Gao T, Jin J, Jing T, et al. 2020. Sesquiterpene glucosylation mediated by glucosyltransferase UGT91Q2 is involved in the modulation of cold stress tolerance in tea plants. New Phytologist 226:362−72

doi: 10.1111/nph.16364
[13]

Zhang C, He Q, Wang M, Gao X, Chen J, et al. 2020. Exogenous indole acetic acid alleviates Cd toxicity in tea (Camellia sinensis). Ecotoxicology and Environmental Safety 190:110090

doi: 10.1016/j.ecoenv.2019.110090
[14]

Zhao M, Cai B, Jin J, Zhang N, Jing T, et al. 2020. Cold stress-induced glucosyltransferase CsUGT78A15 is involved in the formation of eugenol glucoside in Camellia sinensis. Horticultural Plant Journal 6:439−49

doi: 10.1016/j.hpj.2020.11.005
[15]

Jing T, Zhang N, Gao T, Zhao M, Jin J, et al. 2019. Glucosylation of (Z)-3-hexenol informs intra species interactions in plants: A case study in Camellia sinensis. Plant, Cell & Environment 42:1352−67

doi: 10.1111/pce.13479
[16]

Jing T, Du W, Gao T, Wu Y, Zhang N, et al. 2021. Herbivore-induced DMNT catalyzed by CYP82D47 plays an important role in the induction of JA-dependent herbivore resistance of neighboring tea plants. Plant, Cell & Environment 44:1178−91

doi: 10.1111/pce.13861
[17]

Jiang H, Zhang M, Qin L, Wang D, Yu F, et al. 2020. Chemical composition of a supercritical fluid (SFE-CO2) extract from Baeckea frutescens L. leaves and its bioactivity against two pathogenic fungi isolated from the tea plant (Camellia sinensis (L. ) O. Kuntze). Plants 9:1119

doi: 10.3390/plants9091119
[18]

Hu Y, Zhang M, Lu M, Wu Y, Jing T, et al. 2021. Salicylic acid carboxyl glucosyltransferase UGT87E7 regulates disease resistance in Camellia sinensis. Plant Physiology 188:1507−20

doi: 10.1093/plphys/kiab569
[19]

Chen Y, Wan Y, Zou L, Tong H. 2020. First report of leaf spot disease caused by Epicoccum layuense on Camellia sinensis in Chongqing, China. Plant Disease 104:2029−30

doi: 10.1094/pdis-09-19-1906-pdn
[20]

Chen Y, Zeng L, Shu N, Wang H, Tong H. 2017. First report of pestalotiopsis camelliae causing grey blight disease on Camellia sinensis in China. Plant Disease 101:1034

doi: 10.1094/pdis-01-17-0033-pdn
[21]

Chen Y, Zeng L, Shu N, Jiang M, Wang H, et al. 2018. Pestalotiopsis-like species causing gray blight disease on Camellia sinensis in China. Plant Disease 102:98−106

doi: 10.1094/PDIS-05-17-0642-RE
[22]

Guo M, Pan Y, Dai Y, Gao Z. 2014. First report of brown blight disease caused by Colletotrichum gloeosporioides on Camellia sinensis in Anhui province, China. Plant Disease 98:284

doi: 10.1094/PDIS-08-13-0896-PDN
[23]

Lin SR, Yu SY, Chang TD, Lin YJ, Wen CJ, et al. 2021. First report of anthracnose caused by Colletotrichum fructicola on tea in Taiwan. Plant Disease 105:710

doi: 10.1094/PDIS-06-20-1288-PDN
[24]

Chen Y, Tong H, Wei X, Yuan L. 2016. First report of brown blight disease on Camellia sinensis caused by Colletotrichum acutatum in China. Plant Disease 100:227

doi: 10.1094/pdis-07-15-0762-pdn
[25]

Yin Q, An X, Wu X, Dharmasena DSP, Li D, et al. 2021. First report of Alternaria longipes causing leaf spot on tea in China. Plant Disease 105:4167

doi: 10.1094/PDIS-07-20-1583-PDN
[26]

Yin Q, Jiang S, Li D, Huang H, Wang Y, et al. 2021. First report of Epicoccum nigrum causing brown leaf spot in tea in Guizhou province, China. Plant Disease 106:321

doi: 10.1094/PDIS-04-21-0815-PDN
[27]

Hernández-Restrepo M, Bezerra JDP, Tan YP, Wiederhold N, Crous PW, et al. 2019. Re-evaluation of Mycoleptodiscus species and morphologically similar fungi. Persoonia 42:205−27

doi: 10.3767/persoonia.2019.42.08
[28]

Nakashima KI, Tomida J, Tsuboi T, Kawamura Y, Inoue M. 2020. Muyocopronones A and B: azaphilones from the endophytic fungus Muyocopron laterale. Beilstein Journal of Organic Chemistry 16:2100−107

doi: 10.3762/bjoc.16.177