[1] |
Mitchell CH, Diggle PK. 2005. The evolution of unisexual flowers: Morphological and functional convergence results from diverse developmental transitions. American Journal of Botany 92:1068−76 doi: 10.3732/ajb.92.7.1068 |
[2] |
Dellaporta SL, Calderon-Urrea A. 1993. Sex determination in flowering plants. The Plant Cell 5:1241−51 doi: 10.1105/tpc.5.10.1241 |
[3] |
Diggle PK, Di Stilio VS, Gschwend AR, Golenberg EM, Moore RC, et al. 2011. Multiple developmental processes underlie sex differentiation in angiosperms. Trends in Genetics 27:368−76 doi: 10.1016/j.tig.2011.05.003 |
[4] |
Renner SS, Ricklefs RE. 1995. Dioecy and its correlates in the flowering plants. American Journal of Botany 82:596−606 doi: 10.1002/j.1537-2197.1995.tb11504.x |
[5] |
Akagi T, Henry IM, Tao R, Comai L. 2014. A y-chromosome-encoded small RNA acts as a sex determinant in persimmons. Science 346:646−50 doi: 10.1126/science.1257225 |
[6] |
Akagi T, Kajita K, Kibe T, Morimura H, Tsujimoto T, et al. 2014. Development of molecular markers associated with sexuality in Diospyros lotus L. and their application in D. kaki Thunb. Journal of the Japanese Society for Horticultural Science 83:214−21 doi: 10.2503/jjshs1.CH-109 |
[7] |
Akagi T, Henry IM, Kawai T, Comai L, Tao R. 2016. Epigenetic regulation of the sex determination gene megi in polyploid persimmon. The Plant Cell 28:2905−15 doi: 10.1105/tpc.16.00532 |
[8] |
Akagi T, Shirasawa K, Nagasaki H, Hirakawa H, Tao R, et al. 2020. The persimmon genome reveals clues to the evolution of a lineage-specific sex determination system in plants. PLoS Genetics 16:1−26 doi: 10.1371/journal.pgen.1008566 |
[9] |
Akagi T, Henry IM, Ohtani H, Morimoto T, Beppu K, et al. 2018. A Y-encoded suppressor of feminization arose via lineage-specific duplication of a cytokinin response regulator in kiwifruit. The Plant Cell 30:780−95 doi: 10.1105/tpc.17.00787 |
[10] |
Akagi T, Pilkington SM, Varkonyi-Gasic E, Henry IM, Sugano SS, et al. 2019. Two Y-chromosome-encoded genes determine sex in kiwifruit. Nature Plants 5:801−9 doi: 10.1038/s41477-019-0489-6 |
[11] |
Coito JL, Silva HG, Ramos MJN, Cunha J, Eiras-Dias J, et al. 2019. Vitis flower types: From the wild to crop plants. PeerJ 7:e7879 doi: 10.7717/peerj.7879 |
[12] |
Zou C, Massonnet M, Minio A, Patel S, Llaca V, et al. 2021. Multiple independent recombinations led to hermaphroditism in grapevine. PNAS 118:e2023548118 doi: 10.1073/pnas.2023548118 |
[13] |
Picq S, Santoni S, Lacombe T, Latreille M, Weber A, et al. 2014. A small XY chromosomal region explains sex determination in wild dioecious V. vinifera and the reversal to hermaphroditism in domesticated grapevines. BMC Plant Biology 14:229 doi: 10.1186/s12870-014-0229-z |
[14] |
Badouin H, Velt A, Gindraud F, Flutre T, Dumas V, et al. 2020. The wild grape genome sequence provides insights into the transition from dioecy to hermaphroditism during grape domestication. Genome Biology 21:223 doi: 10.1186/s13059-020-02131-y |
[15] |
Fechter I, Hausmann L, Daum M, Rosleff Sörensen T, Viehöver P, et al. 2012. Candidate genes within a 143 kb region of the flower sex locus in Vitis. Molecular Genetics and Genomics 287:247−59 doi: 10.1007/s00438-012-0674-z |
[16] |
Massonnet M, Cochetel N, Minio A, Vondras AM, Lin J, et al. 2020. The genetic basis of sex determination in grapes. Nature Communications 11:2902 doi: 10.1038/s41467-020-16700-z |
[17] |
Urasaki N, Tarora K, Shudo A, Ueno H, Tamaki M, et al. 2012. Digital transcriptome analysis of putative sex-determination genes in Papaya (Carica papaya). PLoS ONE 7:e40904 doi: 10.1371/journal.pone.0040904 |
[18] |
Ming R, Yu Q, Moore PH. 2007. Sex determination in papaya. Seminars in Cell and Developmental Biology 18:401−8 doi: 10.1016/j.semcdb.2006.11.013 |
[19] |
Zhang W, Wang X, Yu Q, Ming R, Jiang J. 2008. DNA methylation and heterochromatinization in the male-specific region of the primitive Y chromosome of papaya. Genome Research 18:1938−43 doi: 10.1101/gr.078808.108 |
[20] |
Liu Z, Moore PH, Ma H, Ackerman CM, Ragiba M, et al. 2004. A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427:348−52 doi: 10.1038/nature02228 |
[21] |
Wang J, Na JK, Yu Q, Gschwend AR, Han J, et al. 2012. Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. PNAS 109:13710−15 doi: 10.1073/pnas.1207833109 |
[22] |
VanBuren R, Zeng F, Chen C, Zhang J, Wai CM, et al. 2015. Origin and domestication of papaya Yh chromosome. Genome Research 25:524−33 doi: 10.1101/gr.183905.114 |
[23] |
Ueno H, Urasaki N, Natsume S, Yoshida K, Tarora K, et al. 2015. Genome sequence comparison reveals a candidate gene involved in male–hermaphrodite differentiation in papaya (Carica papaya) trees. Molecular Genetics and Genomics 290:661−70 doi: 10.1007/s00438-014-0955-9 |
[24] |
Lee CY, Lin HJ, Viswanath KK, Lin CP, Chang BCH, et al. 2018. The development of functional mapping by three sex-related loci on the third whorl of different sex types of Carica papaya L. PLoS One 13:e0194605 doi: 10.1371/journal.pone.0194605 |
[25] |
Jia H, Jia H, Cai Q, Wang Y, Zhao H, et al. 2019. The red bayberry genome and genetic basis of sex determination. Plant Biotechnology Journal 17:397−409 doi: 10.1111/pbi.12985 |
[26] |
Mathew LS, Spannagl M, Al-Malki A, George B, Torres MF, et al. 2014. A first genetic map of date palm (Phoenix dactylifera) reveals long-range genome structure conservation in the palms. BMC Genomics 15:285 doi: 10.1186/1471-2164-15-285 |
[27] |
Al-Dous EK, George B, Al-Mahmoud ME, Al-Jaber MY, Wang H, et al. 2011. De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nature Biotechnology 29:521−27 doi: 10.1038/nbt.1860 |
[28] |
Torres MF, Mathew LS, Ahmed I, Al-Azwani IK, Krueger R, et al. 2018. Genus-wide sequencing supports a two-locus model for sex-determination in Phoenix. Nature Communications 9:3969 doi: 10.1038/s41467-018-06375-y |
[29] |
Tennessen JA, Govindarajulu R, Liston A, Ashman TL. 2013. Targeted sequence capture provides insight into genome structure and genetics of male sterility in a gynodioecious diploid strawberry, fragaria vesca ssp. bracteata (Rosaceae). G3 Genes|Genomes|Genetics 3:1341−51 doi: 10.1534/g3.113.006288 |
[30] |
Ashman TL, Tennessen JA, Dalton RM, Govindarajulu R, Koski MH, et al. 2015. Multilocus sex determination revealed in two populations of gynodioecious wild strawberry, Fragaria vesca subsp. bracteata. G3 Genes|Genomes|Genetics 5:2759−73 doi: 10.1534/g3.115.023358 |
[31] |
Tennessen JA, Wei N, Straub SCK, Govindarajulu R, Liston A, Ashman TL. 2018. Repeated translocation of a gene cassette drives sex-chromosome turnover in strawberries. PLoS Biology 16:e2006062 doi: 10.1371/journal.pbio.2006062 |
[32] |
Liu S, Xu L, Jia Z, Xu Y, Yang Q, et al. 2008. Genetic association of ETHYLENE-INSENSITIVE3-like sequence with the sex-determining M locus in cucumber (Cucumis sativus L. ). Theoretical and Applied Genetics 117:927−33 doi: 10.1007/s00122-008-0832-1 |
[33] |
Galun E. 1962. Study of the inheritance of sex expression in the cucumber. The interaction of major genes with modifying genetic and non-genetic factors. Genetica 32:134−63 doi: 10.1007/BF01816091 |
[34] |
Kubicki B. 1969. Investigation on sex determination in cucumber (Cucumis sativus L. ). III. Variability of sex expression in the monoecious and gynoecious lines. Genetica Polonica 10:5−22. http://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-9a24b86d-da94-4727-95ce-b62990040fa5 |
[35] |
Robinson R, Munger M, Whitaker T, Bohn G. 1976. Genes of the Cucurbitaceae. HortScience 11:554−68 |
[36] |
Trebitsh T, Staub JE, O'Neill SD. 1997. Identification of a 1-aminocyclopropane-1-carboxylic acid synthase gene linked to the female (F) locus that enhances female sex expression in cucumber. Plant Physiology 113:987−95 doi: 10.1104/pp.113.3.987 |
[37] |
Li Z, Huang S, Liu S, Pan J, Zhang Z, et al. 2009. Molecular isolation of the M gene suggests that a conserved-residue conversion induces the formation of bisexual flowers in cucumber plants. Genetics 182:1381−5 doi: 10.1534/genetics.109.104737 |
[38] |
Rosa JT. 1928. The inheritance of flower types in Cucumis and Citrullus. Hilgardia 3:233−50 doi: 10.3733/hilg.v03n09p233 |
[39] |
Boualem A, Troadec C, Camps C, Lemhemdi A, Morin H, et al. 2015. A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges. Science 350:688−91 doi: 10.1126/science.aac8370 |
[40] |
Kubicki B. 1969. Investigation of sex determination in cucumber (Cucumis sativus L. ). VI. Androecism. Cenetica Polonica 10:87−100 |
[41] |
Knopf RR, Trebitsh T. 2006. The female-specific Cs-ACS1G gene of cucumber. A case of gene duplication and recombination between the non-sex-specific 1-aminocyclopropane-1-carboxylate synthase gene and a branched-chain amino acid transaminase gene. Plant and Cell Physiology 47:1217−28 doi: 10.1093/pcp/pcj092 |
[42] |
Zhang Z, Mao L, Chen H, Bu F, Li G, et al. 2015. Genome-wide mapping of structural variations reveals a copy number variant that determines reproductive morphology in cucumber. The Plant Cell 27:1595−604 doi: 10.1105/tpc.114.135848 |
[43] |
Saito S, Fujii N, Miyazawa Y, Yamasaki S, Matsuura S, et al. 2007. Correlation between development of female flower buds and expression of the CS-ACS2 gene in cucumber plants. Journal of Experimental Botany 58:2897−907 doi: 10.1093/jxb/erm141 |
[44] |
Greco M, Chiappetta A, Bruno L, Bitonti MB. 2012. In Posidonia oceanica cadmium induces changes in DNA methylation and chromatin patterning. Journal of Experimental Botany 63:695−709 doi: 10.1093/jxb/err313 |
[45] |
Chen H, Sun J, Li S, Cui Q, Zhang H, et al. 2016. An ACC oxidase gene essential for cucumber carpel development. Molecular Plant 9:1315−27 doi: 10.1016/j.molp.2016.06.018 |
[46] |
Che G, Zhang X. 2019. Molecular basis of cucumber fruit domestication. Current Opinion in Plant Biology 47:38−46 doi: 10.1016/j.pbi.2018.08.006 |
[47] |
Kenigsbuch D, Cohen Y. 1990. The inheritance of gynoecy in muskmelon. Genome 33:317−20 doi: 10.1139/g90-049 |
[48] |
Pitrat M. 2002. Gene List for Melon. Cucurbit Genetics Cooperative Report 25:76−93. https://cucurbit.info/2002/07/2002-gene-list-for-melon/ |
[49] |
Poole CF, Grimball PC. 1939. Inheritance of new sex forms in Cucumis melo L. Journal of Heredity 30:21−25 doi: 10.1093/oxfordjournals.jhered.a104626 |
[50] |
Boualem A, Fergany M, Fernandez R, Troadec C, Martin A, et al. 2008. A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science 321:836−38 doi: 10.1126/science.1159023 |
[51] |
Martin A, Troadec C, Boualem A, Rajab M, Fernandez R, et al. 2009. A transposon-induced epigenetic change leads to sex determination in melon. Nature 461:1135−38 doi: 10.1038/nature08498 |
[52] |
Poole CF, Grimball PC. 1945. Interaction of sex, shape, and weight genes in watermelon. Journal of Agricultural Research 71:533−52 |
[53] |
Jiang X, Lin D. 2007. Discovery of watermelon gynoecious gene gy. Acta Horticulturae Sinica 34:141−42 doi: 10.16420/j.issn.0513-353x.2007.01.028 |
[54] |
Ji G, Zhang J, Gong G, Shi J, Zhang H, et al. 2015. Inheritance of sex forms in watermelon (Citrullus lanatus). Scientia Horticulturae 193:367−73 doi: 10.1016/j.scienta.2015.07.039 |
[55] |
Boualem A, Lemhemdi A, Sari MA, Pignoly S, Troadec C, et al. 2016. The andromonoecious sex determination gene predates the separation of Cucumis and Citrullus genera. PLoS ONE 11:e0155444 doi: 10.1371/journal.pone.0155444 |
[56] |
Ji G, Zhang J, Zhang H, Sun H, Gong G, et al. 2016. Mutation in the gene encoding 1-aminocyclopropane-1-carboxylate synthase 4 (CitACS4) led to andromonoecy in watermelon. Journal of Integrative Plant Biology 58:762−65 doi: 10.1111/jipb.12466 |
[57] |
Manzano S, Aguado E, Martínez C, Megías Z, García A, et al. 2016. The ethylene biosynthesis gene CitACS4 regulates monoecy/andromonoecy in watermelon (Citrullus lanatus). PLoS One 11:e0154362 doi: 10.1371/journal.pone.0154362 |
[58] |
Zhang J, Guo S, Ji G, Zhao H, Sun H, et al. 2020. A unique chromosome translocation disrupting ClWIP1 leads to gynoecy in watermelon. The Plant Journal 101:265−77 doi: 10.1111/tpj.14537 |
[59] |
Kubicki B. 1970. Androecious strains of Cucúrbita pepo L. Genet. Pol 11:45−51 |
[60] |
Manzano S, Martínez C, Domínguez V, Avalos E, Garrido D, et al. 2010. A major gene conferring reduced ethylene sensitivity and maleness in Cucurbita pepo. Journal of Plant Growth Regulation 29:73−84 doi: 10.1007/s00344-009-9116-5 |
[61] |
Manzano S, Martínez C, Gómez P, Garrido D, Jamilena M. 2010. Cloning and characterisation of two CTR1-like genes in Cucurbita pepo: Regulation of their expression during male and female flower development. Sexual Plant Reproduction 23:301−13 doi: 10.1007/s00497-010-0140-1 |
[62] |
Manzano S, Martínez C, Megías Z, Garrido D, Jamilena M. 2013. Involvement of ethylene biosynthesis and signalling in the transition from male to female flowering in the monoecious Cucurbita pepo. Journal of Plant Growth Regulation 32:789−98 doi: 10.1007/s00344-013-9344-6 |
[63] |
Shan W. 2016. Inheritance analysis and location of the gynoecious trait in Cucurbita maxima. Thesis. Northeast Agricultural University, Heilongjiang Province. 71 pp. |
[64] |
Yang W. 2017. Mapping and candidate gene analysis of strong female characteristic in Cucurbita maxima Duch. Thesis. Hebei University of Engineering, Hebei Province. 68 pp. |
[65] |
Sun L, Sun G, Shi C, Sun D. 2018. Transcriptome analysis reveals new microRNAs-mediated pathway involved in anther development in male sterile wheat. BMC Genomics 19:333 doi: 10.1186/s12864-018-4727-5 |
[66] |
Sun J. 2018. Fine mapping, candidate gene cloning and application in pumpkin (Cucurbita maxima Duch.) breeding of the strong female characteristics. Thesis. Hebei University of Engineering, Hebei Province. 83 pp. |
[67] |
Ram D, Kumar S, Singh M, Rai M, Kalloo G. 2006. Inheritance of gynoecism in bitter gourd (Momordica charantia L. ). Journal of Heredity 97:294−95 doi: 10.1093/jhered/esj028 |
[68] |
Behera T, Dey S, Sirohi P. 2006. DBGy-201 and DBGy-202: Two gynoecious lines in bitter gourd (Momordica charantia L.) isolated from indigenous source. The Indian Journal of Genetics and Plant Breeding 66:61−62 |
[69] |
Matsumura H, Miyagi N, Taniai N, Fukushima M, Tarora K, et al. 2014. Mapping of the gynoecy in bitter gourd (Momordica charantia) using RAD-seq analysis. PLoS One 9:e87138 doi: 10.1371/journal.pone.0087138 |
[70] |
Gangadhara Rao P, Behera TK, Gaikwad AB, Munshi AD, Jat GS, et al. 2018. Mapping and QTL analysis of gynoecy and earliness in bitter gourd (momordica charantia L. ) using genotyping-by-sequencing (GBS) technology. Frontiers in Plant Science 9:1555 doi: 10.3389/fpls.2018.01555 |
[71] |
Wang R, Zhang M, Fang F, Huang R, Liu W, et al. 2012. Cloning and sequence analysis of 1-aminocyclopropane-1-carboxylic acid synthase gene cDNA from gynoecious momordica charantia. Biotechnology Bulletin 6:54−58 doi: 10.13560/j.cnki.biotech.bull.1985.2012.06.005 |
[72] |
Harkess A, Zhou J, Xu C, Bowers JE, Van Der Hulst R, et al. 2017. The asparagus genome sheds light on the origin and evolution of a young y chromosome. Nature Communications 8:1279 doi: 10.1038/s41467-017-01064-8 |
[73] |
Harkess A, Huang K, van der Hulst R, Tissen B, Caplan JL, et al. 2020. Sex determination by two Y-linked genes in garden asparagus. The Plant Cell 32:1790−96 doi: 10.1105/tpc.19.00859 |
[74] |
Qian W, Fan G, Liu D, Zhang H, Wang X, et al. 2017. Construction of a high-density genetic map and the X/Y sex-determining gene mapping in spinach based on large-scale markers developed by specific-locus amplified fragment sequencing (SLAF-seq). BMC Genomics 18:276 doi: 10.1186/s12864-017-3659-9 |
[75] |
She H, Xu Z, Zhang H, Li G, Wu J, et al. 2021. Identification of a male-specific region (MSR) in Spinacia oleracea. Horticultural Plant Journal 7:341−46 doi: 10.1016/j.hpj.2021.01.003 |
[76] |
West NW, Golenberg EM. 2018. Gender-specific expression of GIBBERELLIC ACID INSENSITIVE is critical for unisexual organ initiation in dioecious Spinacia oleracea. New Phytologist 217:1322−34 doi: 10.1111/nph.14919 |