[1]

Giordano M, Petropoulos SA, Rouphael Y. 2021. Response and defence mechanisms of vegetable crops against drought, heat and salinity stress. Agriculture 11:463

doi: 10.3390/agriculture11050463
[2]

Kronzucker HJ, Britto DT. 2011. Sodium transport in plants: a critical review. New Phytologist 189:54−81

doi: 10.1111/j.1469-8137.2010.03540.x
[3]

Zhu J. 2000. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiology 124:941−48

doi: 10.1104/pp.124.3.941
[4]

Edelstein M, Cohen R, Baumkoler F, Ben-Hur M. 2017. Using grafted vegetables to increase tolerance to salt and toxic elements. Israel Journal of Plant Sciences 64:3−20

doi: 10.1080/07929978.2016.1151285
[5]

Roychoudhury A, Paul S, Basu S. 2013. Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Reports 32:985−1006

doi: 10.1007/s00299-013-1414-5
[6]

Arzani A. 2008. Improving salinity tolerance in crop plants: a biotechnological view. In Vitro Cellular & Developmental Biology -Plant 44:373−83

doi: 10.1007/s11627-008-9157-7
[7]

Colla G, Rouphael Y, Leonardi C, Bie Z. 2010. Role of grafting in vegetable crops grown under saline conditions. Scientia Horticulturae 127:147−55

doi: 10.1016/j.scienta.2010.08.004
[8]

Huang Y, Bie Z, Liu P, Niu M, Zhen A, et al. 2013. Reciprocal grafting between cucumber and pumpkin demonstrates the roles of the rootstock in the determination of cucumber salt tolerance and sodium accumulation. Scientia Horticulturae 149:47−54

doi: 10.1016/j.scienta.2012.04.018
[9]

Liu Z, Bie Z, Huang Y, Zhen A, Niu M, et al. 2013. Rootstocks improve cucumber photosynthesis through nitrogen metabolism regulation under salt stress. Acta Physiologiae Plantarum 35:2259−67

doi: 10.1007/s11738-013-1262-5
[10]

Niu M, Xie J, Chen C, Cao H, Sun J, et al. 2018. An early ABA-induced stomatal closure, Na+ sequestration in leaf vein and K+ retention in mesophyll confer salt tissue tolerance in Cucurbita species. Journal of Experimental Botany 69:4945−60

doi: 10.1093/jxb/ery251
[11]

Penella C, Nebauer S, López-Galarza S, Quiñones A, Bautista A, et al. 2017. Grafting pepper onto tolerant rootstocks: An environmental-friendly technique overcome water and salt stress. Scientia Horticulturae 226:33−41

doi: 10.1016/j.scienta.2017.08.020
[12]

Parthasarathi T, Ephrath JE, Lazarovitch N. 2021. Grafting of tomato (Solanum lycopersicum L.) onto potato (Solanum tuberosum L.) to improve salinity tolerance. Scientia Horticulturae 282:110050

doi: 10.1016/j.scienta.2021.110050
[13]

Semi̇z GD, Suarez DL. 2015. Tomato salt tolerance: impact of grafting and water compositionon yield and ion relations. Turkish Journal of Agriculture and Forestry 39:876−86

doi: 10.3906/tar-1412-106
[14]

Kacjan Maršić N, Štolfa P, Vodnik D, Košmelj K, Mikulič-Petkovšek M, et al. 2021. Physiological and biochemical responses of ungrafted and grafted bell pepper plants (Capsicum annuum L. var. grossum (L. ) Sendtn. ) grown under moderate salt stress. Plants-Basel 10:314

doi: 10.3390/plants10020314
[15]

Huang Y, Kong Q, Chen F, Bie Z. 2015. The history, current status and future prospects of vegetable grafting in China. Acta Horticulturae 1086:31−39

doi: 10.17660/actahortic.2015.1086.2
[16]

Lee JM, Kubota C, Tsao SJ, Bie Z, Echevarria PH, et al. 2010. Current status of vegetable grafting: Diffusion, grafting techniques, automation. Scientia Horticulturae 127:93−105

doi: 10.1016/j.scienta.2010.08.003
[17]

Kyriacou MC, Rouphael Y, Colla G, Zrenner R, Schwarz D. 2017. Vegetable grafting: The implications of a growing agronomic imperative for vegetable fruit quality and nutritive value. Frontiers in Plant Science 8:741

doi: 10.3389/fpls.2017.00741
[18]

Kubota C, Meng C, Son Y, Lewis M, Spalholz H, et al. 2017. Horticultural, systems-engineering and economic evaluations of short-term plant storage techniques as a labor management tool for vegetable grafting nurseries. PLoS One 12:e0170614

doi: 10.1371/journal.pone.0170614
[19]

Thies JA. 2021. Grafting for managing vegetable crop pests. Pest Management Science 77:4825−4835

doi: 10.1002/ps.6512
[20]

Oda M. 2002. Grafting of vegetable crops. Scientific Report of the Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University 54:49−72

[21]

Schwarz D, Rouphael Y, Colla G, Venema J. 2010. Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants. Scientia Horticulturae 127:162−71

doi: 10.1016/j.scienta.2010.09.016
[22]

Plaut Z, Edelstein M, Ben-Hur M. 2013. Overcoming salinity barriers to crop production using traditional methods. Critical Reviews in Plant Sciences 32:250−91

doi: 10.1080/07352689.2012.752236
[23]

Albacete AA, Martínez-Andújar C, Pérez-Alfocea F. 2014. Hormonal and metabolic regulation of source-sink relations under salinity and drought: from plant survival to crop yield stability. Biotechnology Advances 32:12−30

doi: 10.1016/j.biotechadv.2013.10.005
[24]

Fallik E, Ilic Z. 2014. Grafted vegetables - the influence of rootstock and scion on postharvest quality. Folia Horticulturae 26:79−90

doi: 10.2478/fhort-2014-0008
[25]

Keatinge JDH, Lin LJ, Ebert AW, Chen WY, Hughes JD, et al. 2014. Overcoming biotic and abiotic stresses in the Solanaceae through grafting: current status and future perspectives. Biological Agriculture and Horticulture 30:272−87

doi: 10.1080/01448765.2014.964317
[26]

Nawaz MA, Imtiaz M, Kong Q, Cheng F, Ahmed W, et al. 2016. Grafting: a technique to modify ion accumulation in horticultural crops. Frontiers in Plant Science 7:1457

doi: 10.3389/fpls.2016.01457
[27]

Nawaz MA, Shireen F, Huang Y, Bie Z, Ahmed W, et al. 2017. Perspectives of vegetable grafting in Pakistan: current status, challenges and opportunities. International Journal of Agriculture and Biology 19:1165−74

doi: 10.17957/IJAB/15.0404
[28]

Singh H, Kumar P, Chaudhari S, Edelstein M. 2017. Tomato grafting: A global perspective. Hortscience 52:1328−36

doi: 10.21273/HORTSCI11996-17
[29]

Lu X, Liu W, Wang T, Zhang J, Li X, et al. 2020. Systemic long-distance signaling and communication between rootstock and scion in grafted vegetables. Frontiers in Plant Science 11:460

doi: 10.3389/fpls.2020.00460
[30]

Singh H, Kumar P, Kumar A, Kyriacou MC, Colla G, et al. 2020. Grafting tomato as a tool to improve salt tolerance. Agronomy 10:263

doi: 10.3390/agronomy10020263
[31]

Ellouzi H, Hamed KB, Cela J, Munné-Bosch S, Abdelly C. 2011. Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Physiologia Plantarum 142:128−43

doi: 10.1111/j.1399-3054.2011.01450.x
[32]

Niu S, Li H, Paré PW, Aziz M, Wang S, et al. 2016. Induced growth promotion and higher salt tolerance in the halophyte grass Puccinellia tenuiflora by beneficial rhizobacteria. Plant Soil 407:217−30

doi: 10.1007/s11104-015-2767-z
[33]

Tombesi S, Nardini A, Frioni T, Soccolini M, Zadra C, et al. 2015. Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine. Scientific Reports 5:12449

doi: 10.1038/srep12449
[34]

Rivelli AR, Lovelli S, Perniola M. 2002. Effects of salinity on gas exchange, water relations and growth of sunflower (Helianthus annuus). Functional Plant Biology 29:1405−15

doi: 10.1071/PP01086
[35]

Saha P, Chatterjee P, Biswas AK. 2010. NaCl pretreatment alleviates salt stress by enhancement of antioxidant defense system and osmolyte accumulation in mungbean (Vigna radiata L. Wilczek). Indian Journal of Experimental Biology 48:593−600

[36]

Foyer CH, Noctor G. 2005. Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. Plant Cell 17:1866−75

doi: 10.1105/tpc.105.033589
[37]

Zhen A, Bie Z, Huang Y, Liu Z, Lei B. 2011. Effects of salt-tolerant rootstock grafting on ultrastructure, photosynthetic capacity, and H2O2-scavenging system in chloroplasts of cucumber seedlings under NaCl stress. Acta Physiologiae Plantarum 33:2311

doi: 10.1007/s11738-011-0771-3
[38]

Mittler R. 2013. Temporal-spatial interaction between ROS and ABA controls rapid systemic acclimation in plants. The Plant Cell 25:3553−69

doi: 10.1105/tpc.113.114595
[39]

Colla G, Rouphael Y, Jawad R, Kumar P, Rea E, et al. 2013. The effectiveness of grafting to improve NaCl and CaCl2 tolerance in cucumber. Scientia Horticulturae 164:380−91

doi: 10.1016/j.scienta.2013.09.023
[40]

Sarwar N, Saifullah Malhi SS, Zia MH, Naeem A, et al. 2010. Role of mineral nutrition in minimizing cadmium accumulation by plants. Journal of the Science of Food and Agriculture 90:925−37

doi: 10.1002/jsfa.3916
[41]

Yang Y, Lu X, Yan B, Li B, Sun J, et al. 2013. Bottle gourd rootstock-grafting affects nitrogen metabolism in NaCl-stressed watermelon leaves and enhances short-term salt tolerance. Journal of Plant Physiology 170:653−61

doi: 10.1016/j.jplph.2012.12.013
[42]

Devi P, Perkins-Veazie P, Miles C. 2020. Impact of grafting on watermelon fruit maturity and quality. Horticulturae 6:97

doi: 10.3390/horticulturae6040097
[43]

Munns R. 2011. Plant adaptations to salt and water stress: differences and commonalities. In Plant Responses To Drought And Salinity Stress: Developments In A Post-genomic Era, ed. Turkan I. vol.57:555. USA: Academic Press, Elsevier. pp. 1−32. https://doi.org/10.1016/B978-0-12-387692-8.00001-1

[44]

Colla G, Rouphael Y, Rea E, Cardarelli M. 2012. Grafting cucumber plants enhance tolerance to sodium chloride and sulfate salinization. Scientia Horticulturae 135:177−85

doi: 10.1016/j.scienta.2011.11.023
[45]

Lei B, Huang Y, Sun J, Xie J, Niu M, et al. 2014. Scanning ion-selective electrode technique and X-ray microanalysis provide direct evidence of contrasting Na+ transport ability from root to shoot in salt-sensitive cucumber and salt-tolerant pumpkin under NaCl stress. Physiologia Plantarum 152:738−48

doi: 10.1111/ppl.12223
[46]

Rouphael Y, Cardarelli M, Rea E, Colla G. 2012. Improving melon and cucumber photosynthetic activity, mineral composition, and growth performance under salinity stress by grafting onto Cucurbita hybrid rootstocks. Photosynthetica 50:180−88

doi: 10.1007/s11099-012-0002-1
[47]

Fu Q, Zhang X, Kong Q, Bie Z, Wang H. 2018. Grafting onto pumpkin rootstock is an efficient alternative to improve melon tolerance to NaCl stress. European Journal of Horticultural Science 83:337−44

doi: 10.17660/ejhs.2018/83.6.1
[48]

Di Gioia F, Signore A, Serio F, Santamaria P. 2013. Grafting improves tomato salinity tolerance through sodium partitioning within the shoot. HortScience 48:855−62

doi: 10.21273/HORTSCI.48.7.855
[49]

Semiz GD, Suarez DL. 2019. Impact of grafting, salinity and irrigation water composition on eggplant fruit yield and ion relations. Scientific Reports 9:19373

doi: 10.1038/s41598-019-55841-0
[50]

Coban A, Akhoundnejad Y, Dere S, Dasgan HY. 2020. Impact of salt-tolerant rootstock on the enhancement of sensitive tomato plant responses to salinity. HortScience 55:35−39

doi: 10.21273/HORTSCI14476-19
[51]

López-Serrano L, Canet-Sanchis G, Selak GV, Penella C, San Bautista A, et al. 2020. Physiological characterization of a pepper hybrid rootstock designed to cope with salinity stress. Plant Physiology and Biochemistry 148:207−19

doi: 10.1016/j.plaphy.2020.01.016
[52]

Rus A, Baxter I, Muthukumar B, Gustin J, Lahner B, et al. 2006. Natural variants of AtHKT1 enhance Na+ accumulation in two wild populations of Arabidopsis. PLoS Genetics 2:e210

doi: 10.1371/journal.pgen.0020210
[53]

Tounsi S, Ben Amar S, Masmoudi K, Sentenac H, Brini F, et al. 2016. Characterization of two HKT1;4 transporters from Triticum monococcum to elucidate the determinants of the wheat salt tolerance Nax1 QTL. Plant and Cell Physiology 57:2047−57

doi: 10.1093/pcp/pcw123
[54]

Sun J, Cao H, Cheng J, He X, Sohail H, et al. 2018. Pumpkin CmHKT1;1 controls shoot Na+ accumulation via limiting Na+ transport from rootstock to scion in grafted cucumber. International Journal of Molecular Science 19:2648

doi: 10.3390/ijms19092648
[55]

Asins MJ, Raga V, Roca D, Belver A, Carbonell EA. 2015. Genetic dissection of tomato rootstock effects on scion traits under moderate salinity. Theoretical and Applied Genetics 128:667−79

doi: 10.1007/s00122-015-2462-8
[56]

Edelstein M, Plaut Z, Ben-Hur M. 2011. Sodium and chloride exclusion and retention by non-grafted and grafted melon and Cucurbita plants. Journal of Experimental Botany 62:177−84

doi: 10.1093/jxb/erq255
[57]

Chen TW, Gomez Pineda IM, Brand AM, Stützel H. 2020. Determining ion toxicity in cucumber under salinity stress. Agronomy 10:677

doi: 10.3390/agronomy10050677
[58]

Penella C, Landi M, Guidi L, Nebauer SG, Pellegrini E, et al. 2016. Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetic performance and sinks strength. Journal of Plant Physiology 193:1−11

doi: 10.1016/j.jplph.2016.02.007
[59]

Orsini F, Sanoubar R, Oztekin GB, Kappel N, Tepecik M, et al. 2013. Improved stomatal regulation and ion partitioning boosts salt tolerance in grafted melon. Functional Plant Biology 40:628−636

doi: 10.1071/FP12350
[60]

Wang X, Lan Z, Tian L, Li J, Yang G, et al. 2021. Change of physiological properties and ion distribution by synergistic effect of Ca2+ and grafting under salt stress on cucumber seedlings. Agronomy 11:848

doi: 10.3390/agronomy11050848
[61]

Penella C, Nebauer SG, Quiñones A, San Bautista A, López-Galarza S, et al. 2015. Some rootstocks improve pepper tolerance to mild salinity through ionic regulation. Plant Science 230:12−22

doi: 10.1016/j.plantsci.2014.10.007
[62]

Mohsenian Y, Roosta HR. 2015. Effects of grafting on alkali stress in tomato plants: Datura rootstock improve alkalinity tolerance of tomato plants. Journal of Plant Nutrition 38:51−72

doi: 10.1080/01904167.2014.920370
[63]

Feng X, Guo K, Yang C, Li J, Chen H, et al. 2019. Growth and fruit production of tomato grafted onto wolfberry (Lycium chinense) rootstock in saline soil. Scientia Horticulturae 255:298−305

doi: 10.1016/j.scienta.2019.05.028
[64]

Yang Y, Wang L, Tian J, Li J, Sun J, et al. 2012. Proteomic study participating the enhancement of growth and salt tolerance of bottle gourd rootstock-grafted watermelon seedlings. Plant Physiology and Biochemistry 58:54−65

doi: 10.1016/j.plaphy.2012.05.026
[65]

Shu S, Gao P, Li L, Yuan Y, Sun J, et al. 2016. Abscisic acid-induced H2O2 accumulation enhances antioxidant capacity in pumpkin-grafted cucumber leaves under Ca(NO3)2 stress. Frontiers in Plant Science 7:1489

doi: 10.3389/fpls.2016.01489
[66]

Wei G, Yang L, Zhu Y, Chen G. 2009. Changes in oxidative damage, antioxidant enzyme activities and polyamine contents in leaves of grafted and non-grafted eggplant seedlings under stress by excess of calcium nitrate. Scientia Horticulturae 120:443−51

doi: 10.1016/j.scienta.2008.12.009
[67]

Talhouni M, Sönmez K, Kiran S, Beyaz R, Yildiz M, et al. 2019. Comparison of salinity effects on grafted and non-grafted eggplants in terms of ion accumulation, MDA content and antioxidative enzyme activities. Advances in Horticultural Science 33:87−95

doi: 10.13128/ahs-23794
[68]

Wei G, Zhu Y, Liu Z, Yang L, Zhang G. 2007. Growth and ionic distribution of grafted eggplant seedlings with NaCl stress. Acta Botanica Boreali-Occidentalia Sinica 27:1172−78

[69]

Ben Rejeb K, Benzarti M, Debez A, Bailly C, Savouré A, et al. 2015. NADPH oxidase-dependent H2O2 production is required for salt-induced antioxidant defense in Arabidopsis thaliana. Journal of Plant Physiology 174:5−15

doi: 10.1016/j.jplph.2014.08.022
[70]

Li L, Shu S, Xu Q, An Y, Sun J, et al. 2017. NO accumulation alleviates H2O2 -dependent oxidative damage induced by Ca(NO3)2 stress in the leaves of pumpkin-grafted cucumber seedlings. Physiologia Plantarum 160:33−45

doi: 10.1111/ppl.12535
[71]

Elsheery NI, Helaly MN, Omar SA, John SVS, Zabochnicka-Swiątek M, et al. 2020. Physiological and molecular mechanisms of salinity tolerance in grafted cucumber. South African Journal of Botany 130:90−102

doi: 10.1016/j.sajb.2019.12.014
[72]

Abdeldym EA, El-Mogy MM, Abdellateaf HRL, Atia MAM. 2020. Genetic characterization, agro-morphological and physiological evaluation of grafted tomato under salinity stress conditions. Agronomy 10:1948

doi: 10.3390/agronomy10121948
[73]

Yan Y, Wang S, Wei M, Gong B, Shi Q. 2018. Effect of different rootstocks on the salt stress tolerance in watermelon seedlings. Horticultural Plant Journal 4:239−49

doi: 10.1016/j.hpj.2018.08.003
[74]

Niu M, Sun S, Nawaz MA, Sun J, Cao H, et al. 2019. Grafting cucumber onto pumpkin induced early stomatal closure by increasing ABA sensitivity under salinity conditions. Frontiers in Plant Science 10:1290

doi: 10.3389/fpls.2019.01290
[75]

James RA, Munns R, von Caemmerer S, Trejo C, Miller C, et al. 2006. Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+, K+ and Cl- in salt-affected barley and durum wheat. Plant, Cell & Environment 29:2185−97

doi: 10.1111/j.1365-3040.2006.01592.x
[76]

Xu HL, Gauthier L, Gosselin A. 1994. Photosynthetic responses of greenhouse tomato plants to high solution electrical conductivity and low soil water content. Journal of Horticultural Science and Biotechnology 69:821−32

doi: 10.1080/14620316.1994.11516518
[77]

Liu S, Li H, Lv X, Ahammed GJ, Xia X, et al. 2016. Grafting cucumber onto luffa improves drought tolerance by increasing ABA biosynthesis and sensitivity. Scientific Reports 6:20212

doi: 10.1038/srep20212
[78]

Liu Z, Bie Z, Huang Y, Zhen A, Lei B, et al. 2012. Grafting onto Cucurbita moschata rootstock alleviates salt stress in cucumber plants by delaying photoinhibition. Photosynthetica 50:152−160

doi: 10.1007/s11099-012-0007-9
[79]

Yang Y, Yu L, Wang L, Guo S. 2015. Bottle gourd rootstock-grafting promotes photosynthesis by regulating the stomata and non-stomata performances in leaves of watermelon seedlings under NaCl stress. Journal of Plant Physiology 186−187:50−58

doi: 10.1016/j.jplph.2015.07.013
[80]

Shabala S, Wu H, Bose J. 2015. Salt stress sensing and early signalling events in plant roots: Current knowledge and hypothesis. Plant Science 241:109−119

doi: 10.1016/j.plantsci.2015.10.003
[81]

Albacete A, Martínez-Andújar C, Martínez-Pérez A, Thompson AJ, Dodd IC, et al. 2015. Unravelling rootstock×scion interactions to improve food security. Journal of Experimental Botany 66:2211−26

doi: 10.1093/jxb/erv027
[82]

Gálvez A, Albacete A, Martínez-Andújar C, del Amor FM, López-Marín J. 2021. Contrasting rootstock-mediated growth and yield responses in salinized pepper plants (Capsicum annuum L. ) are associated with changes in the hormonal balance. International Journal of Molecular Sciences 22:3297

doi: 10.3390/ijms22073297
[83]

Hossain MS, Dietz KJ. 2016. Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress. Frontiers in Plant Science 7:548

doi: 10.3389/fpls.2016.00548
[84]

Niu M, Huang Y, Sun S, Sun J, Cao H, et al. 2018. Root respiratory burst oxidase homologue-dependent H2O2 production confers salt tolerance on a grafted cucumber by controlling Na+ exclusion and stomatal closure. Journal of Experimental Botany 69:3465−76

doi: 10.1093/jxb/erx386
[85]

Liu H, Tian X, Li Y, Wu C, Zheng C. 2008. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836−43

doi: 10.1261/rna.895308
[86]

Ding D, Zhang L, Wang H, Liu Z, Zhang Z, et al. 2009. Differential expression of miRNAs in response to salt stress in maize roots. Annals of Botany 103:29−38

doi: 10.1093/aob/mcn205
[87]

Li B, Duan H, Li J, Deng X, Yin W, et al. 2013. Global identification of miRNAs and targets in Populus euphratica under salt stress. Plant Molecular Biology 81:525−39

doi: 10.1007/s11103-013-0010-y
[88]

Li C, Li Y, Bai L, Zhang T, He C, et al. 2013. Grafting-responsive miRNAs in cucumber and pumpkin seedlings identified by high-throughput sequencing at whole genome level. Physiologia Plantarum 151:406−22

doi: 10.1111/ppl.12122
[89]

Liu N, Yang J, Guo S, Xu Y, Zhang M. 2013. Genome-wide identification and comparative analysis of conserved and novel microRNAs in grafted watermelon by high-throughput sequencing. PLoS One 8:e57359

doi: 10.1371/journal.pone.0057359
[90]

Li Y, Li C, Bai L, He C, Yu X. 2016. MicroRNA and target gene responses to salt stress in grafted cucumber seedlings. Acta Physiologiae Plantarum 38:12

doi: 10.1007/s11738-016-2070-5
[91]

Xie J, Lei B, Niu M, Huang Y, Kong Q, et al. 2015. High throughput sequencing of small RNAs in the two Cucurbita germplasm with different sodium accumulation patterns identifies novel microRNAs involved in salt stress response. PLoS One 10:e0127412

doi: 10.1371/journal.pone.0127412
[92]

Tolstyko E, Lezzhov A, Solovyev A. 2019. Identification of miRNA precursors in the phloem of Cucurbita maxima. PeerJ 7:e8269

doi: 10.7717/peerj.8269
[93]

Flores FB, Sanchez-Bel P, Estañ MT, Martinez-Rodriguez MM, Moyano E, et al. 2010. The effectiveness of grafting to improve tomato fruit quality. Scientia Horticulturae 125:211−17

doi: 10.1016/j.scienta.2010.03.026
[94]

Huang Y, Zhao L, Kong Q, Cheng F, Niu M, et al. 2016. Comprehensive Mineral Nutrition Analysis of Watermelon Grafted onto Two Different Rootstocks. Horticultural Plant Journal 2:105−13

doi: 10.1016/j.hpj.2016.06.003
[95]

Niu M, Xie J, Sun J, Huang Y, Kong Q, et al. 2017. A shoot based Na+ tolerance mechanism observed in pumpkin − An important consideration for screening salt tolerant rootstocks. Scientia Horticulturae 218:38−47

doi: 10.1016/j.scienta.2017.02.020
[96]

Gregory PJ, Atkinson CJ, Bengough AG, Else MA, Fernández-Fernández F, et al. 2013. Contributions of roots and rootstocks to sustainable, intensified crop production. Journal of Experimental Botany 64:1209−22

doi: 10.1093/jxb/ers385