[1] |
Baggaley K. 2017. Drones are fighting wildfires in some very surprising ways. NBC News, November 16, 2017. www.nbcnews.com/mach/science/drones-are-fighting-wildfirefires-some-very-surprising-ways-ncna820966 (Accessed January 24, 2022) |
[2] |
Gabbert B. 2018. Drone flying at night detects spot fire. Wildfire Today, August 15, 2018. https://wildfiretoday.com/2018/08/15/drone-flying-at-night-detects-spot-fire/ (Accessed January 24, 2022) |
[3] |
Weichenthal S, Hatzopoulou M, Brauer M. 2019. A picture tells a thousand. exposures: Opportunities and challenges of deep learning image analyses in exposure science and environmental epidemiology. Environment International 122:3−10 doi: 10.1016/j.envint.2018.11.042 |
[4] |
Norman J. 1998. Fire officer's handbook of tactics. 2nd edition. Saddle Brook: Fire Engineering Books & Videos. pp. 15−35 |
[5] |
Smith JP. 2002. Strategic and tactical considerations on the fireground. Upper Saddle River: Pearson Education, Inc. pp. 61−84 |
[6] |
Barr R, Eversole J. 2003. The fire chief's handbook. 6th edition. Tulsa, USA: PennWell Corporation |
[7] |
Useem M, Cook J, Sutton L. 2005. Developing leaders for decision making under stress: Wildland firefighters in the South Canyon Fire and its aftermath. Academy of Management Learning & Education 4:461−85 doi: 10.5465/AMLE.2005.19086788 |
[8] |
Klein G, Calderwood R, Clinton-Cirocco A. 2010. Rapid decision making on the fire ground: The original study plus a postscript. Journal of Cognitive Engineering and Decision Making 4:186−209 doi: 10.1518/155534310X12844000801203 |
[9] |
Calkin D, Thompson M, Finney M, Hyde K. 2011. A real-time risk assessment tool supporting wildland fire decision-making. Journal of Forestry. 2011:274–80 www.fs.fed.us/rm/pubs_other/rmrs_2011_calkin_d003.pdf |
[10] |
Holmes TP, Calkin DE. 2013. Econometric analysis of fire suppression production functions for large wildland fires. International Journal of Wildland Fire 22:246−55 doi: 10.1071/WF11098 |
[11] |
Martell DL. 2015. A review of recent forest and wildland fire management decision support systems research. Current Forestry Reports 1:128−37 doi: 10.1007/s40725-015-0011-y |
[12] |
Ren S, He K, Girshick R, Sun J. 2015. Faster R-CNN: Towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems 28:91–99. https://arxiv.org/pdf/1506.01497.pdf |
[13] |
Chen Y, Li W, Sakaridis C, Dai D, Van Gool L. 2018. Domain adaptive faster R-CNN for object detection in the wild. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Utah, USA. 2018. pp. 3339–48. USA: IEEE https://doi.org10.1109/CVPR.2018.00352 |
[14] |
Wu M, Yue H, Wang J, Huang Y, Liu M, et al. 2020. Object detection based on RGC mask R-CNN. IET Image Processing 14:1502−8 doi: 10.1049/iet-ipr.2019.0057 |
[15] |
Sun P, Zhang R, Jiang Y, Kong T, Xu C, et al. 2021. Sparse R-CNN: End-to-end object detection with learnable proposals. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, 2021. pp. 14454–63. USA: IEEE https://doi.org/10.1109/CVPR46437.2021.01422 |
[16] |
Redmon J, Divvala S, Girshick R, Farhadi A. 2016. You only look once: Unified, real-time object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Nevada, USA, pp. 779–88. USA: IEEE www.cv-foundation.org/openaccess/content_cvpr_2016/html/Redmon_You_Only_Look_CVPR_2016_paper.html |
[17] |
Redmon J, Farhadi A. 2017. YOLO9000: Better, faster, stronger. 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, Hawaii, USA, 2016, pp. 6517–25. USA: IEEE https://doi.org/10.1109/CVPR.2017.690 |
[18] |
Redmon J, Farhadi A. 2018. YOLOv3: An incremental improvement. ArXiv: 1804.02767. https://arxiv.org/pdf/1804.02767.pdf |
[19] |
Bochkovskiy A, Wang CY, Liao HYM. 2020. YOLOv4: Optimal speed and accuracy of object detection. ArXiv:2004.10934 https://arxiv.org/pdf/2004.10934.pdf |
[20] |
Li Y, Wang H, Dang LM, Nguyen TN, Han D, et al. 2020. A deep learning-based hybrid framework for object detection and recognition in autonomous driving. IEEE Access 8:194228−39 doi: 10.1109/ACCESS.2020.3033289 |
[21] |
Sozzi M, Cantalamessa S, Cogato A, Kayad A, Marinello F. 2021. Grape yield spatial variability assessment using YOLOv4 object detection algorithm. In Precision agriculture ’21, ed. Stafford JV. Wageningen: Wageningen Academic Publishers. pp. 193−98. https://doi.org/10.3920/978-90-8686-916-9_22 |
[22] |
Kajabad EN, Begen P, Nizomutdinov B, Ivanov S. 2021. YOLOv4 for urban object detection: Case of electronic inventory in St. Petersburg. 2021 28th Conference of Open Innovations Association (FRUCT), 2021, Moscow, Russia, pp. 316–21. USA: IEEE https://doi.org/10.23919/FRUCT50888.2021.9347622 |
[23] |
Cai C, Nishimura T, Hwang J, Hu X, Kuroda A. 2021. Asbestos detection with fluorescence microscopy images and deep learning. Sensors 21:4582 doi: 10.3390/s21134582 |
[24] |
Hu P, Cai C, Yi H, Zhao J, Feng Y, et al. 2022. Aiding airway obstruction diagnosis with computational fluid dynamics and convolutional neural network: A new perspective and numerical case study. Journal of Fluids Engineering 144:081206 doi: 10.1115/1.4053651 |
[25] |
Deng J, Dong W, Socher R, Li L, Li K, et al. 2009. Imagenet: A large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 2009, pp. 248–55. USA: IEEE. https://doi.org/10.1109/cvprw.2009.5206848 |
[26] |
Wang CY, Liao HYM, Yeh I, Wu YH, Chen PY, et al. 2020. CSPNet: A new backbone that can enhance learning capability of CNN. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 2020, pp. 390–91. USA: IEEE. https://doi.org/10.1109/CVPRW50498.2020.00203 |
[27] |
Liu S, Qi L, Qin H, Shi J, Jia J. 2018. Path aggregation network for instance segmentation. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 8759–68. USA: IEEE. https://doi.org/10.1109/CVPR.2018.00913 |
[28] |
He K, Zhang X, Ren S, Sun J. 2015. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015, pp. 1026–34. USA: IEEE. https://doi.org/10.1109/ICCV.2015.123 |
[29] |
He K, Zhang X, Ren S, Sun J. 2015. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE transactions on pattern analysis and machine intelligence 37:1904−16 doi: 10.1109/TPAMI.2015.2389824 |
[30] |
Goutte C, Gaussier E. 2005. A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In Advances in Information Retrieval. ECIR 2005. Lecture Notes in Computer Science, vol 3408: XVIII, 574. Heidelberg: Springer, Berlin, Heidelberg. pp. 345−59. https://doi.org/10.1007/978-3-540-31865-1_25 |