[1]

Baggaley K. 2017. Drones are fighting wildfires in some very surprising ways. NBC News, November 16, 2017. www.nbcnews.com/mach/science/drones-are-fighting-wildfirefires-some-very-surprising-ways-ncna820966 (Accessed January 24, 2022)

[2]

Gabbert B. 2018. Drone flying at night detects spot fire. Wildfire Today, August 15, 2018. https://wildfiretoday.com/2018/08/15/drone-flying-at-night-detects-spot-fire/ (Accessed January 24, 2022)

[3]

Weichenthal S, Hatzopoulou M, Brauer M. 2019. A picture tells a thousand. exposures: Opportunities and challenges of deep learning image analyses in exposure science and environmental epidemiology. Environment International 122:3−10

doi: 10.1016/j.envint.2018.11.042
[4]

Norman J. 1998. Fire officer's handbook of tactics. 2nd edition. Saddle Brook: Fire Engineering Books & Videos. pp. 15−35

[5]

Smith JP. 2002. Strategic and tactical considerations on the fireground. Upper Saddle River: Pearson Education, Inc. pp. 61−84

[6]

Barr R, Eversole J. 2003. The fire chief's handbook. 6th edition. Tulsa, USA: PennWell Corporation

[7]

Useem M, Cook J, Sutton L. 2005. Developing leaders for decision making under stress: Wildland firefighters in the South Canyon Fire and its aftermath. Academy of Management Learning & Education 4:461−85

doi: 10.5465/AMLE.2005.19086788
[8]

Klein G, Calderwood R, Clinton-Cirocco A. 2010. Rapid decision making on the fire ground: The original study plus a postscript. Journal of Cognitive Engineering and Decision Making 4:186−209

doi: 10.1518/155534310X12844000801203
[9]

Calkin D, Thompson M, Finney M, Hyde K. 2011. A real-time risk assessment tool supporting wildland fire decision-making. Journal of Forestry. 2011:274–80 www.fs.fed.us/rm/pubs_other/rmrs_2011_calkin_d003.pdf

[10]

Holmes TP, Calkin DE. 2013. Econometric analysis of fire suppression production functions for large wildland fires. International Journal of Wildland Fire 22:246−55

doi: 10.1071/WF11098
[11]

Martell DL. 2015. A review of recent forest and wildland fire management decision support systems research. Current Forestry Reports 1:128−37

doi: 10.1007/s40725-015-0011-y
[12]

Ren S, He K, Girshick R, Sun J. 2015. Faster R-CNN: Towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems 28:91–99. https://arxiv.org/pdf/1506.01497.pdf

[13]

Chen Y, Li W, Sakaridis C, Dai D, Van Gool L. 2018. Domain adaptive faster R-CNN for object detection in the wild. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Utah, USA. 2018. pp. 3339–48. USA: IEEE https://doi.org10.1109/CVPR.2018.00352

[14]

Wu M, Yue H, Wang J, Huang Y, Liu M, et al. 2020. Object detection based on RGC mask R-CNN. IET Image Processing 14:1502−8

doi: 10.1049/iet-ipr.2019.0057
[15]

Sun P, Zhang R, Jiang Y, Kong T, Xu C, et al. 2021. Sparse R-CNN: End-to-end object detection with learnable proposals. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, 2021. pp. 14454–63. USA: IEEE https://doi.org/10.1109/CVPR46437.2021.01422

[16]

Redmon J, Divvala S, Girshick R, Farhadi A. 2016. You only look once: Unified, real-time object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Nevada, USA, pp. 779–88. USA: IEEE www.cv-foundation.org/openaccess/content_cvpr_2016/html/Redmon_You_Only_Look_CVPR_2016_paper.html

[17]

Redmon J, Farhadi A. 2017. YOLO9000: Better, faster, stronger. 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, Hawaii, USA, 2016, pp. 6517–25. USA: IEEE https://doi.org/10.1109/CVPR.2017.690

[18]

Redmon J, Farhadi A. 2018. YOLOv3: An incremental improvement. ArXiv: 1804.02767. https://arxiv.org/pdf/1804.02767.pdf

[19]

Bochkovskiy A, Wang CY, Liao HYM. 2020. YOLOv4: Optimal speed and accuracy of object detection. ArXiv:2004.10934 https://arxiv.org/pdf/2004.10934.pdf

[20]

Li Y, Wang H, Dang LM, Nguyen TN, Han D, et al. 2020. A deep learning-based hybrid framework for object detection and recognition in autonomous driving. IEEE Access 8:194228−39

doi: 10.1109/ACCESS.2020.3033289
[21]

Sozzi M, Cantalamessa S, Cogato A, Kayad A, Marinello F. 2021. Grape yield spatial variability assessment using YOLOv4 object detection algorithm. In Precision agriculture ’21, ed. Stafford JV. Wageningen: Wageningen Academic Publishers. pp. 193−98. https://doi.org/10.3920/978-90-8686-916-9_22

[22]

Kajabad EN, Begen P, Nizomutdinov B, Ivanov S. 2021. YOLOv4 for urban object detection: Case of electronic inventory in St. Petersburg. 2021 28th Conference of Open Innovations Association (FRUCT), 2021, Moscow, Russia, pp. 316–21. USA: IEEE https://doi.org/10.23919/FRUCT50888.2021.9347622

[23]

Cai C, Nishimura T, Hwang J, Hu X, Kuroda A. 2021. Asbestos detection with fluorescence microscopy images and deep learning. Sensors 21:4582

doi: 10.3390/s21134582
[24]

Hu P, Cai C, Yi H, Zhao J, Feng Y, et al. 2022. Aiding airway obstruction diagnosis with computational fluid dynamics and convolutional neural network: A new perspective and numerical case study. Journal of Fluids Engineering 144:081206

doi: 10.1115/1.4053651
[25]

Deng J, Dong W, Socher R, Li L, Li K, et al. 2009. Imagenet: A large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 2009, pp. 248–55. USA: IEEE. https://doi.org/10.1109/cvprw.2009.5206848

[26]

Wang CY, Liao HYM, Yeh I, Wu YH, Chen PY, et al. 2020. CSPNet: A new backbone that can enhance learning capability of CNN. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 2020, pp. 390–91. USA: IEEE. https://doi.org/10.1109/CVPRW50498.2020.00203

[27]

Liu S, Qi L, Qin H, Shi J, Jia J. 2018. Path aggregation network for instance segmentation. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 8759–68. USA: IEEE. https://doi.org/10.1109/CVPR.2018.00913

[28]

He K, Zhang X, Ren S, Sun J. 2015. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015, pp. 1026–34. USA: IEEE. https://doi.org/10.1109/ICCV.2015.123

[29]

He K, Zhang X, Ren S, Sun J. 2015. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE transactions on pattern analysis and machine intelligence 37:1904−16

doi: 10.1109/TPAMI.2015.2389824
[30]

Goutte C, Gaussier E. 2005. A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In Advances in Information Retrieval. ECIR 2005. Lecture Notes in Computer Science, vol 3408: XVIII, 574. Heidelberg: Springer, Berlin, Heidelberg. pp. 345−59. https://doi.org/10.1007/978-3-540-31865-1_25