[1]

Yu SM, Lee HT, Lo SF, Ho THD. 2021. How does rice cope with too little oxygen during its early life. New Phytologist 229:36−41

doi: 10.1111/nph.16395
[2]

Li P, Chen Y, Lu J, Zhang C, Liu Q, et al. 2022. Genes and their molecular functions determining seed structure, components, and quality of rice. Rice 15:18

doi: 10.1186/s12284-022-00562-8
[3]

Anfang M, Shani E. 2021. Transport mechanisms of plant hormones. Current Opinion in Plant Biology 63:102055

doi: 10.1016/j.pbi.2021.102055
[4]

Zhao H, Yin C, Ma B, Chen S, Zhang J. 2021. Ethylene signaling in rice and Arabidopsis: New regulators and mechanisms. Journal of Integrative Plant Biology 63:102−25

doi: 10.1111/jipb.13028
[5]

Shu K, Liu X, Xie Q, He Z. 2016. Two faces of one seed: hormonal regulation of dormancy and germination. Molecular Plant 9:34−45

doi: 10.1016/j.molp.2015.08.010
[6]

Binenbaum J, Weinstain R, Shani E. 2018. Gibberellin localization and transport in plants. Trends in Plant Science 23:410−21

doi: 10.1016/j.tplants.2018.02.005
[7]

Liu D, Yu Z, Zhang G, Yin W, Li L, et al. 2021. Diversification of plant agronomic traits by genome editing of brassinosteroid signaling family genes in rice. Plant Physiology 187:2563−76

doi: 10.1093/plphys/kiab394
[8]

Li J, Nagpal P, Vitart V, McMorris TC, Chory J. 1996. A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272:398−401

doi: 10.1126/science.272.5260.398
[9]

Hu D, Wei L, Liao W. 2021. Brassinosteroids in plants: crosstalk with small-molecule compounds. Biomolecules 11:1800

doi: 10.3390/biom11121800
[10]

Hong Z, Ueguchi-Tanaka M, Shimizu-Sato S, Inukai Y, Fujioka S, et al. 2002. Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. The Plant Journal 32:495−508

doi: 10.1046/j.1365-313X.2002.01438.x
[11]

Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, et al. 2003. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. The Plant Cell 15:2900−10

doi: 10.1105/tpc.014712
[12]

Zhou Y, Tao Y, Zhu J, Miao J, Liu J, et al. 2017. GNS4, a novel allele of DWARF11, regulates grain number and grain size in a high-yield rice variety. Rice 10:34

doi: 10.1186/s12284-017-0171-4
[13]

Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, et al. 2000. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. The Plant Cell 12:1591−605

doi: 10.1105/tpc.12.9.1591
[14]

Li Q, Lu J, Yu J, Zhang C, He J, et al. 2018. The brassinosteroid-regulated transcription factors BZR1/BES1 function as a coordinator in multisignal-regulated plant growth. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1861:561−71

doi: 10.1016/j.bbagrm.2018.04.003
[15]

Tong H, Chu C. 2018. Functional specificities of brassinosteroid and potential utilization for crop improvement. Trends in Plant Science 23:1016−28

doi: 10.1016/j.tplants.2018.08.007
[16]

Clouse SD. 2011. Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. The Plant Cell 23:1219−30

doi: 10.1105/tpc.111.084475
[17]

Tong H, Liu L, Jin Y, Du L, Yin Y, et al. 2012. DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice. The Plant Cell 24:2562−77

doi: 10.1105/tpc.112.097394
[18]

Bai M, Zhang L, Gampala SS, Zhu S, Song W, et al. 2007. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. PNAS 104:13839−44

doi: 10.1073/pnas.0706386104
[19]

Li C, Zhang B, Yu H. 2021. GSK3s: nodes of multilayer regulation of plant development and stress responses. Trends in Plant Science 26:1286−300

doi: 10.1016/j.tplants.2021.07.017
[20]

Tong H, Jin Y, Liu W, Li F, Fang J, et al. 2009. DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. The Plant Journal 58:803−16

doi: 10.1111/j.1365-313X.2009.03825.x
[21]

Li N, Xu R, Li Y. 2019. Molecular networks of seed size control in plants. Annual Review of Plant Biology 70:435−63

doi: 10.1146/annurev-arplant-050718-095851
[22]

Zuo J, Li J. 2014. Molecular genetic dissection of quantitative trait loci regulating rice grain size. Annual Review of Genetics 48:99−118

doi: 10.1146/annurev-genet-120213-092138
[23]

Morinaka Y, Sakamoto T, Inukai Y, Agetsuma M, Kitano H, et al. 2006. Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice. Plant Physiology 141:924−31

doi: 10.1104/pp.106.077081
[24]

Zhang B, Wang X, Zhao Z, Wang R, Huang X, et al. 2016. OsBRI1 activates BR signaling by preventing binding between the TPR and kinase domains of OsBSK3 via phosphorylation. Plant Physiology 170:1149−61

doi: 10.1104/pp.15.01668
[25]

Zhang Y, Dong G, Chen F, Xiong E, Liu H, et al. 2022. The kinesin-13 protein BR HYPERSENSITIVE 1 is a negative brassinosteroid signaling component regulating rice growth and development. TAG Theoretical and Applied Genetics Theoretische Und Angewandte Genetik 135:1751−66

doi: 10.1007/s00122-022-04067-2
[26]

Yuan H, Xu Z, Chen W, Deng C, Liu Y, et al. 2022. OsBSK2, a putative brassinosteroid-signaling kinase, positively controls grain size in rice. Journal of Experimental Botany In Press:erac222

doi: 10.1093/jxb/erac222
[27]

Gao X, Zhang J, Zhang X, Zhou J, Jiang Z, et al. 2019. Rice qGL3/OsPPKL1 functions with the GSK3/SHAGGY-like kinase OsGSK3 to modulate brassinosteroid signaling. The Plant Cell 31:1077−93

doi: 10.1105/tpc.18.00836
[28]

Ying J, Ma M, Bai C, Huang X, Liu J, et al. 2018. TGW3, a major QTL that negatively modulates grain length and weight in rice. Molecular Plant 11:750−53

doi: 10.1016/j.molp.2018.03.007
[29]

Zhang X, Wang J, Huang J, Lan H, Wang C, et al. 2012. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. PNAS 109:21534−39

doi: 10.1073/pnas.1219776110
[30]

Zhang J, Gao X, Cai G, Wang Y, Li J, et al. 2021. An adenylate kinase OsAK3 involves brassinosteroid signaling and grain length in rice (Oryza sativa L. ). Rice 14:105

doi: 10.1186/s12284-021-00546-0
[31]

Zhu X, Liang W, Cui X, Chen M, Yin C, et al. 2015. Brassinosteroids promote development of rice pollen grains and seeds by triggering expression of Carbon Starved Anther, a MYB domain protein. The Plant Journal 82:570−81

doi: 10.1111/tpj.12820
[32]

Gao X, Zhang J, Cai G, Du H, Li J, et al. 2022. qGL3/OsPPKL1 induces phosphorylation of 14-3-3 protein OsGF14b to inhibit OsBZR1 function in brassinosteroid signaling. Plant Physiology 188:624−36

doi: 10.1093/plphys/kiab484
[33]

Liu D, Zhao H, Xiao Y, Zhang G, Cao S, et al. 2022. A cryptic inhibitor of cytokinin phosphorelay controls rice grain size. Molecular Plant 15:293−307

doi: 10.1016/j.molp.2021.09.010
[34]

Gong L, Liao S, Duan W, Liu Y, Zhu D, et al. 2022. OsCPL3 is involved in brassinosteroid signaling by regulating OsGSK2 stability. Journal of Integrative Plant Biology 0:1−15

doi: 10.1111/jipb.13311
[35]

Xiao Y, Liu D, Zhang G, Tong H, Chu C. 2017. Brassinosteroids regulate OFP1, a DLT interacting protein, to modulate plant architecture and grain morphology in rice. Frontiers in Plant Science 8:1698

doi: 10.3389/fpls.2017.01698
[36]

Xiao Y, Zhang G, Liu D, Niu M, Tong H, et al. 2020. GSK2 stabilizes OFP3 to suppress brassinosteroid responses in rice. The Plant Journal 102:1187−201

doi: 10.1111/tpj.14692
[37]

Yang C, Shen W, He Y, Tian Z, Li J. 2016. OVATE family protein 8 positively mediates brassinosteroid signaling through interacting with the GSK3-like kinase in rice. PLoS Genetics 12:e1006118

doi: 10.1371/journal.pgen.1006118
[38]

Tian X, He M, Mei E, Zhang B, Tang J, et al. 2021. WRKY53 integrates classic brassinosteroid signaling and the mitogen-activated protein kinase pathway to regulate rice architecture and seed size. The Plant Cell 33:2753−75

doi: 10.1093/plcell/koab137
[39]

Gao J, Chen H, Yang H, He Y, Tian Z, et al. 2018. A brassinosteroid responsive miRNA-target module regulates gibberellin biosynthesis and plant development. New Phytologist 220:488−501

doi: 10.1111/nph.15331
[40]

Che R, Tong H, Shi B, Liu Y, Fang S, et al. 2015. Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nature Plants 2:15195

doi: 10.1038/nplants.2015.195
[41]

Sun P, Zhang W, Wang Y, He Q, Shu F, et al. 2016. OsGRF4 controls grain shape, panicle length and seed shattering in rice. Journal of Integrative Plant Biology 58:836−47

doi: 10.1111/jipb.12473
[42]

Chen X, Jiang L, Zheng J, Chen F, Wang T, et al. 2019. A missense mutation in Large Grain Size 1 increases grain size and enhances cold tolerance in rice. Journal of Experimental Botany 70:3851−66

doi: 10.1093/jxb/erz192
[43]

Duan P, Ni S, Wang J, Zhang B, Xu R, et al. 2016. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nature Plants 2:15203

doi: 10.1038/nplants.2015.203
[44]

Li S, Gao F, Xie K, Zeng X, Cao Y, et al. 2016. The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotechnology Journal 14:2134−46

doi: 10.1111/pbi.12569
[45]

Zhao D, Li Q, Zhang C, Zhang C, Yang Q, et al. 2018. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nature Communications 9:1240

doi: 10.1038/s41467-018-03616-y
[46]

Zhang X, Sun J, Cao X, Song X. 2015. Epigenetic mutation of RAV6 affects leaf angle and seed size in rice. Plant Physiology 169:2118−28

doi: 10.1104/pp.15.00836
[47]

Jiang Y, Bao L, Jeong SY, Kim SK, Xu C, et al. 2012. XIAO is involved in the control of organ size by contributing to the regulation of signaling and homeostasis of brassinosteroids and cell cycling in rice. The Plant Journal 70:398−408

doi: 10.1111/j.1365-313X.2011.04877.x
[48]

Feng Z, Wu C, Wang C, Roh J, Zhang L, et al. 2016. SLG controls grain size and leaf angle by modulating brassinosteroid homeostasis in rice. Journal of Experimental Botany 67:4241−53

doi: 10.1093/jxb/erw204
[49]

Qian W, Wu C, Fu Y, Hu G, He Z, et al. 2017. Novel rice mutants overexpressing the brassinosteroid catabolic gene CYP734A4. Plant Molecular Biology 93:197−208

doi: 10.1007/s11103-016-0558-4
[50]

Gui J, Zheng S, Liu C, Shen J, Li J, et al. 2016. OsREM4.1 interacts with OsSERK1 to coordinate the interlinking between abscisic acid and brassinosteroid signaling in rice. Developmental Cell 38:201−13

doi: 10.1016/j.devcel.2016.06.011
[51]

Nakagawa H, Tanaka A, Tanabata T, Ohtake M, Fujioka S, et al. 2012. SHORT GRAIN1 decreases organ elongation and brassinosteroid response in rice. Plant Physiology 158:1208−19

doi: 10.1104/pp.111.187567
[52]

Xu C, Liu Y, Li Y, Xu X, Xu C, et al. 2015. Differential expression of GS5 regulates grain size in rice. Journal of Experimental Botany 66:2611−23

doi: 10.1093/jxb/erv058
[53]

Liu J, Chen J, Zheng X, Wu F, Lin Q, et al. 2017. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nature Plants 3:17043

doi: 10.1038/nplants.2017.43
[54]

Tian P, Liu J, Mou C, Shi C, Zhang H, et al. 2019. GW5‐Like, a homolog of GW5, negatively regulates grain width, weight and salt resistance in rice. Journal of Integrative Plant Biology 61:1171−85

doi: 10.1111/jipb.12745
[55]

Zhang X, Yang C, Lin H, Wang J, Xue H. 2021. Rice SPL12 coevolved with GW5 to determine grain shape. Science Bulletin 66:2353−57

doi: 10.1016/j.scib.2021.05.005
[56]

Zhang G, Song X, Guo H, Wu Y, Chen X, et al. 2016. A small G protein as a novel component of the rice brassinosteroid signal transduction. Molecular Plant 9:1260−71

doi: 10.1016/j.molp.2016.06.010
[57]

Liu X, Yang C, Miao R, Zhou C, Cao P, et al. 2018. DS1/OsEMF1 interacts with OsARF11 to control rice architecture by regulation of brassinosteroid signaling. Rice 11:46

doi: 10.1186/s12284-018-0239-9
[58]

Duan P, Xu J, Zeng D, Zhang B, Geng M, et al. 2017. Natural variation in the promoter of GSE5 contributes to grain size diversity in rice. Molecular Plant 10:685−94

doi: 10.1016/j.molp.2017.03.009
[59]

Bewley JD. 1997. Seed germination and dormancy. The Plant Cell 9:1055−66

doi: 10.1105/tpc.9.7.1055
[60]

Holdsworth MJ, Bentsink L, Soppe WJJ. 2008. Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytologist 179:33−54

doi: 10.1111/j.1469-8137.2008.02437.x
[61]

Yamaguchi S. 2008. Gibberellin metabolism and its regulation. Annual Review of Plant Biology 59:225−51

doi: 10.1146/annurev.arplant.59.032607.092804
[62]

Shu K, Zhang H, Wang S, Chen M, Wu Y, et al. 2013. ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in Arabidopsis. PLoS Genetics 9:e1003577

doi: 10.1371/journal.pgen.1003577
[63]

Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, Zhao Y. 2020. Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology 62:25−54

doi: 10.1111/jipb.12899
[64]

Frey A, Effroy D, Lefebvre V, Seo M, Perreau F, et al. 2012. Epoxycarotenoid cleavage by NCED5 fine-tunes ABA accumulation and affects seed dormancy and drought tolerance with other NCED family members. The Plant Journal 70:501−12

doi: 10.1111/j.1365-313X.2011.04887.x
[65]

Lee KW, Chen PW, Yu SM. 2014. Metabolic adaptation to sugar/O2 deficiency for anaerobic germination and seedling growth in rice. Plant, Cell & Environment 37:2234−44

doi: 10.1111/pce.12311
[66]

Yu SM, Lo SF, Ho THD. 2015. Source–sink communication: regulated by hormone, nutrient, and stress cross-signaling. Trends in Plant Science 20:844−57

doi: 10.1016/j.tplants.2015.10.009
[67]

Xie Z, Zhang Z, Zou X, Yang G, Komatsu S, et al. 2006. Interactions of two abscisic-acid induced WRKY genes in repressing gibberellin signaling in aleurone cells. The Plant Journal 46:231−42

doi: 10.1111/j.1365-313X.2006.02694.x
[68]

Zhang H, Li M, He D, Wang K, Yang P. 2020. Mutations on ent-kaurene oxidase 1 encoding gene attenuate its enzyme activity of catalyzing the reaction from ent-kaurene to ent-kaurenoic acid and lead to delayed germination in rice. PLoS Genetics 16:e1008562

doi: 10.1371/journal.pgen.1008562
[69]

Song S, Wang G, Wu H, Fan X, Liang L, et al. 2020. OsMFT2 is involved in the regulation of ABA signaling-mediated seed germination through interacting with OsbZIP23/66/72 in rice. The Plant Journal 103:532−46

doi: 10.1111/tpj.14748
[70]

Du L, Xu F, Fang J, Gao S, Tang J, et al. 2018. Endosperm sugar accumulation caused by mutation of PHS8/ISA1 leads to pre-harvest sprouting in rice. The Plant Journal 95:545−56

doi: 10.1111/tpj.13970
[71]

Miao J, Li X, Li X, Tan W, You A, et al. 2020. OsPP2C09, a negative regulatory factor in abscisic acid signalling, plays an essential role in balancing plant growth and drought tolerance in rice. New Phytologist 227:1417−33

doi: 10.1111/nph.16670
[72]

Wang G, Li X, Ye N, Huang M, Feng L, et al. 2021. OsTPP1 regulates seed germination through the crosstalk with abscisic acid in rice. New Phytologist 230:1925−39

doi: 10.1111/nph.17300
[73]

Wang C, Zhu C, Zhou Y, Xiong M, Wang J, et al. 2021. OsbZIP09, a unique Osbzip transcription factor of rice, promotes rather than suppresses seed germination by attenuating abscisic acid pathway. Rice Science 28:358−67

doi: 10.1016/j.rsci.2021.05.006
[74]

Xiong M, Chu L, Li Q, Yu J, Yang Y, et al. 2021. Brassinosteroid and gibberellin coordinate rice seed germination and embryo growth by regulating glutelin mobilization. The Crop Journal 9:1039−48

doi: 10.1016/j.cj.2020.11.006
[75]

Unterholzner SJ, Rozhon W, Papacek M, Ciomas J, Lange T, et al. 2015. Brassinosteroids are master regulators of gibberellin biosynthesis in Arabidopsis. The Plant Cell 27:2261−72

doi: 10.1105/tpc.15.00433
[76]

Jang J, Shang Y, Kang HK, Kim SY, Kim BH, et al. 2018. Arabidopsis galactinol synthases 1 (AtGOLS1) negatively regulates seed germination. Plant Science 267:94−101

doi: 10.1016/j.plantsci.2017.11.010
[77]

Tong X, Wang Y, Sun A, Bello BK, Ni S, et al. 2018. Notched belly grain 4, a novel allele of dwarf11, regulates grain shape and seed germination in rice (Oryza sativa L. ). International Journal of Molecular Sciences 19:4069

doi: 10.3390/ijms19124069
[78]

Xiong M, Yu J, Wang J, Gao Q, Huang L, et al. 2022. Brassinosteroids regulate rice seed germination through the BZR1-RAmy3D transcriptional module. Plant Physiology 189:402−18

doi: 10.1093/plphys/kiac043
[79]

Chen Y, Ho THD, Liu L, Lee DH, Lee C, et al. 2019. Sugar starvation-regulated MYBS2 and 14-3-3 protein interactions enhance plant growth, stress tolerance, and grain weight in rice. PNAS 116:21925−35

doi: 10.1073/pnas.1904818116
[80]

Lee KW, Chen P, Lu C, Chen S, Ho THD, et al. 2009. Coordinated responses to oxygen and sugar deficiency allow rice seedlings to tolerate flooding. Science Signaling 2:ra61

doi: 10.1126/scisignal.2000333
[81]

Li Q, Wang C, Jiang L, Li S, Sun SSM, et al. 2012. An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis. Science Signaling 5:ra72

doi: 10.1126/scisignal.2002908
[82]

Tong H, Xiao Y, Liu D, Gao S, Liu L, et al. 2014. Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. The Plant Cell 26:4376−93

doi: 10.1105/tpc.114.132092
[83]

Bai M, Shang J, Oh E, Fan M, Bai Y, et al. 2012. Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nature Cell Biology 14:810−17

doi: 10.1038/ncb2546
[84]

Shahnejat-Bushehri S, Tarkowska D, Sakuraba Y, Balazadeh S. 2016. Arabidopsis NAC transcription factor JUB1 regulates GA/BR metabolism and signalling. Nature Plants 2:16013

doi: 10.1038/nplants.2016.13
[85]

Li Q, Zhou Y, Xiong M, Ren X, Han L, et al. 2020. Gibberellin recovers seed germination in rice with impaired brassinosteroid signalling. Plant Science 293:110435

doi: 10.1016/j.plantsci.2020.110435
[86]

Zhao X, Dou L, Gong Z, Wang X, Mao T. 2019. BES1 hinders ABSCISIC ACID INSENSITIVE5 and promotes seed germination in Arabidopsis. New Phytologist 221:908−18

doi: 10.1111/nph.15437
[87]

Li Q, Lu J, Zhou Y, Wu F, Tong H, et al. 2019. Abscisic acid represses rice lamina joint inclination by antagonizing brassinosteroid biosynthesis and signaling. International Journal of Molecular Sciences 20:4908

doi: 10.3390/ijms20194908
[88]

Li Q, Xu F, Chen Z, Teng Z, Sun K, et al. 2021. Synergistic interplay of ABA and BR signal in regulating plant growth and adaptation. Nature Plants 7:1108−18

doi: 10.1038/s41477-021-00959-1
[89]

Fang N, Xu R, Huang L, Zhang B, Duan P, et al. 2016. SMALL GRAIN 11 controls grain size, grain number and grain yield in rice. Rice 9:64

doi: 10.1186/s12284-016-0136-z
[90]

Zhan P, Wei X, Xiao Z, Wang X, Ma S, et al. 2021. GW10, a member of P450 subfamily regulates grain size and grain number in rice. Theoretical and Applied Genetics 134:3941−50

doi: 10.1007/s00122-021-03939-3
[91]

Khew CY, Teo CJ, Chan W, Wong HL, Namasivayam P, et al. 2015. Brassinosteroid insensitive 1-associated kinase 1 (OsI-BAK1) is associated with grain filling and leaf development in rice. Journal of Plant Physiology 182:23−32

doi: 10.1016/j.jplph.2015.05.003
[92]

Wu C, Trieu A, Radhakrishnan P, Kwok SF, Harris S, et al. 2008. Brassinosteroids regulate grain filling in rice. The Plant Cell 20:2130−45

doi: 10.1105/tpc.107.055087
[93]

Li Q, Yu J, Lu J, Fei H, Luo M, et al. 2018. Seed-specific expression of OsDWF4, a rate-limiting gene involved in brassinosteroids biosynthesis, improves both grain yield and quality in rice. Journal of Agricultural and Food Chemistry 66:3759−72

doi: 10.1021/acs.jafc.8b00077
[94]

Sun H, Xu H, Li B, Shang Y, Wei M, et al. 2021. The brassinosteroid biosynthesis gene, ZmD11, increases seed size and quality in rice and maize. Plant Physiology and Biochemistry 160:281−93

doi: 10.1016/j.plaphy.2021.01.031
[95]

Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, et al. 2006. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nature Biotechnology 24:105−9

doi: 10.1038/nbt1173