[1]

Rushton PJ, Somssich IE, Ringler P, Shen QJ. 2010. WRKY transcription factors. Trends in Plant Science 15:247−58

doi: 10.1016/j.tplants.2010.02.006
[2]

Eulgem T, Rushton PJ, Robatzek S, Somssich IE. 2000. The WRKY superfamily of plant transcription factors. Trends in Plant Science 5:199−206

doi: 10.1016/S1360-1385(00)01600-9
[3]

Sun C, Palmqvist S, Olsson H, Borén M, Ahlandsberg S, et al. 2003. A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. The Plant Cell 15:2076−92

doi: 10.1105/tpc.014597
[4]

Xiao J, Cheng H, Li X, Xiao J, Xu C, et al. 2013. Rice WRKY13 Regulates Cross Talk between Abiotic and Biotic Stress Signaling Pathways by Selective Binding to Different cis-Elements. Plant Physiology 163:1868−82

doi: 10.1104/pp.113.226019
[5]

Ciolkowski I, Wanke D, Birkenbihl RP, Somssich IE. 2008. Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Molecular Biology 68:81−92

doi: 10.1007/s11103-008-9353-1
[6]

Cheng X, Zhao Y, Jiang Q, Yang J, Zhao W, et al. 2019. Structural basis of dimerization and dual W-box DNA recognition by rice WRKY domain. Nucleic Acids Research 47:4308−18

doi: 10.1093/nar/gkz113
[7]

van Verk MC, Pappaioannou D, Neeleman L, Bol JF, Linthorst HJM. 2008. A Novel WRKY transcription factor is required for induction of PR-1a gene expression by salicylic acid and bacterial elicitors. Plant Physiology 146:1983−95

doi: 10.1104/pp.107.112789
[8]

Wani SH, Anand S, Singh B, Bohra A, Joshi R. 2021. WRKY transcription factors and plant defense responses: latest discoveries and future prospects. Plant Cell Reports 40:1071−85

doi: 10.1007/s00299-021-02691-8
[9]

Zhang Y, Wang L. 2005. The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evolutionary Biology 5:1

doi: 10.1186/1471-2148-5-1
[10]

Xie Z, Zhang Z, Zou X, Huang J, Ruas P, et al. 2005. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiology 137:176−89

doi: 10.1104/pp.104.054312
[11]

Guo C, Guo R, Xu X, Gao M, Li X, et al. 2014. Evolution and expression analysis of the grape (Vitis vinifera L. ) WRKY gene family. Journal of Experimental Botany 65:1513−28

doi: 10.1093/jxb/eru007
[12]

Wang L, Zhu W, Fang L, Sun X, Su L, et al. 2014. Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera. BMC Plant Biology 14:103

doi: 10.1186/1471-2229-14-103
[13]

Wang M, Vannozzi A, Wang G, Liang YH, Tornielli GB, et al. 2014. Genome and transcriptome analysis of the grapevine (Vitis vinifera L. ) WRKY gene family. Horticulture Research 1:14016

doi: 10.1038/hortres.2014.16
[14]

Zhang Y, Feng J. 2014. Identification and characterization of the grape WRKY family. BioMed Research International 2014:787680

doi: 10.1155/2014/787680
[15]

Romero I, Alegria-Carrasco E, González de Prádena A, Vázquez Hernández M, Escribano MI, et al. 2019. WRKY transcription factors in the response of table grapes (cv. Autumn Royal) to high CO2 levels and low temperature. Postharvest Biology and Technology 150:42−51

doi: 10.1016/j.postharvbio.2018.12.011
[16]

Li H, Xu Y, Xiao Y, Zhu Z, Xie X, et al. 2010. Expression and functional analysis of two genes encoding transcription factors, VpWRKY1 and VpWRKY2 , isolated from Chinese wild Vitis pseudoreticulata. Planta 232:1325−37

doi: 10.1007/s00425-010-1258-y
[17]

Liu H, Yang W, Liu D, Han Y, Zhang A, et al. 2011. Ectopic expression of a grapevine transcription factor VvWRKY11 contributes to osmotic stress tolerance in Arabidopsis. Molecular Biology Reports 38:417−27

doi: 10.1007/s11033-010-0124-0
[18]

Marchive C, Mzid R, Deluc L, Barrieu F, Pirrello J, et al. 2007. Isolation and characterization of a Vitis vinifera transcription factor, VvWRKY1, and its effect on responses to fungal pathogens in transgenic tobacco plants. Journal of Experimental Botany 58:1999−2010

doi: 10.1093/jxb/erm062
[19]

Wang F, Zhao P, Zhang L, Zhai H, DU Y. 2019. Functional characterization of WRKY46 in grape and its putative role in the interaction between grape and phylloxera (Daktulosphaira vitifoliae). Horticulture Research 6:102

doi: 10.1038/s41438-019-0185-8
[20]

Zhang L, Zhao T, Sun X, Wang Y, Du C, et al. 2019. Overexpression of VaWRKY12, a transcription factor from Vitis amurensis with increased nuclear localization under low temperature, enhances cold tolerance of plants. Plant Molecular Biology 100:95−110

doi: 10.1007/s11103-019-00846-6
[21]

Zhu D, Hou L, Xiao P, Guo Y, Deyholos MK, et al. 2019. VvWRKY30, a grape WRKY transcription factor, plays a positive regulatory role under salinity stress. Plant Science 280:132−42

doi: 10.1016/j.plantsci.2018.03.018
[22]

Huang S, Gao Y, Liu J, Peng X, Niu X, et al. 2012. Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum. Molecular Genetics and Genomics 287:495−513

doi: 10.1007/s00438-012-0696-6
[23]

Liu Q, Liu Y, Xin Z, Zhang D, Ge B, et al. 2017. Genome-wide identification and characterization of the WRKY gene family in potato (Solanum tuberosum). Biochemical Systematics and Ecology 71:212−18

doi: 10.1016/j.bse.2017.02.010
[24]

Wei K, Chen J, Chen Y, Wu L, Xie D. 2012. Molecular Phylogenetic and Expression Analysis of the Complete WRKY Transcription Factor Family in Maize. DNA Research 19:153−64

doi: 10.1093/dnares/dsr048
[25]

Vannozzi A, Dry IB, Fasoli M, Zenoni S, Lucchin M. 2012. Genome-wide analysis of the grapevine stilbene synthase multigenic family: genomic organization and expression profiles upon biotic and abiotic stresses. BMC Plant Biology 12:130

doi: 10.1186/1471-2229-12-130
[26]

Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, et al. 2002. bZIP transcription factors in Arabidopsis. Trends in Plant Science 7:106−11

doi: 10.1016/S1360-1385(01)02223-3
[27]

Nijhawan A, Jain M, Tyagi AK, Khurana JP. 2008. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiology 146:333−50

doi: 10.1104/pp.107.112821
[28]

Ma Q, Zhang G, Hou L, Wang W, Hao J, et al. 2015. Vitis vinifera VvWRKY13 is an ethylene biosynthesis-related transcription factor. Plant Cell Reports 34:1593−603

doi: 10.1007/s00299-015-1811-z
[29]

Merz PR, Moser T, Höll J, Kortekamp A, Buchholz G, et al. 2015. The transcription factor VvWRKY33 is involved in the regulation of grapevine (Vitis vinifera) defense against the oomycete pathogen Plasmopara viticola. Physiologia Plantarum 153:165−80

doi: 10.1111/ppl.12251
[30]

Ma T, Chen S, Liu J, Fu P, Wu W, et al. 2021. Plasmopara viticola effector PvRXLR111 stabilizes VvWRKY40 to promote virulence. Molecular Plant Pathology 22:231−42

doi: 10.1111/mpp.13020
[31]

Jiang W, Wu J, Zhang Y, Yin L, Lu J. 2015. Isolation of a WRKY30 gene from Muscadinia rotundifolia (Michx) and validation of its function under biotic and abiotic stresses. Protoplasma 252:1361

doi: 10.1007/s00709-015-0769-6
[32]

Bakshi M, Oelmüller R. 2014. WRKY transcription factors: Jack of many trades in plants. Plant Signaling & Behavior 9:e27700

doi: 10.4161/psb.27700
[33]

Hao J, Ma Q, Hou L, Zhao F, Liu X. 2017. VvWRKY13 enhances ABA biosynthesis in Vitis vinifera. Acta Societatis Botanicorum Poloniae 86:3546

doi: 10.5586/asbp.3546
[34]

Amato A, Cavallini E, Zenoni S, Finezzo L, Begheldo M, et al. 2017. A grapevine TTG2-like WRKY transcription factor is involved in regulating vacuolar transport and flavonoid biosynthesis. Frontiers in plant science 7:1979

doi: 10.3389/fpls.2016.01979
[35]

Dilkes BP, Spielman M, Weizbauer R, Watson B, Burkart-Waco D, et al. 2008. The maternally expressed WRKY transcription factor TTG2 controls lethality in interploidy crosses of Arabidopsis. PLoS Biology 6:2707−20

doi: 10.1371/journal.pbio.0060308
[36]

Huang T, Yu D, Wang X. 2021. VvWRKY22 transcription factor interacts with VvSnRK1.1/VvSnRK1.2 and regulates sugar accumulation in grape. Biochemical and Biophysical Research Communications 554:193−98

doi: 10.1016/j.bbrc.2021.03.092
[37]

Guillaumie S, Mzid R, Méchin V, Léon C, Hichri I, et al. 2010. The grapevine transcription factor WRKY2 influences the lignin pathway and xylem development in tobacco. Plant Molecular Biology 72:215−34

doi: 10.1007/s11103-009-9563-1
[38]

Glazebrook J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology 43:205−27

doi: 10.1146/annurev.phyto.43.040204.135923
[39]

Ghozlan MH, EL-Argawy E, Tokgöz S, Lakshman DK, Mitra A. 2020. Plant defense against necrotrophic pathogens. American Journal of Plant Sciences 11:2122−38

doi: 10.4236/ajps.2020.1112149
[40]

Marchive C, Léon C, Kappel C, Coutos-Thévenot P, Corio-Costet M, et al. 2013. Over-Expression of VvWRKY1 in Grapevines Induces Expression of Jasmonic Acid Pathway-Related Genes and Confers Higher Tolerance to the Downy Mildew. PLoS One 8:e54185

doi: 10.1371/journal.pone.0054185
[41]

Guo R, Qiao H, Zhao J, Wang X, Tu M, et al. 2018. The grape VlWRKY3 gene promotes abiotic and biotic stress tolerance in transgenic Arabidopsis thaliana. Frontiers in Plant Science 9:545

doi: 10.3389/fpls.2018.00545
[42]

Zhao J, Zhang X, Guo R, Wang Y, Guo C, et al. 2018. Over-expression of a grape WRKY transcription factor gene, VlWRKY48, in Arabidopsis thaliana increases disease resistance and drought stress tolerance. Plant Cell, Tissue and Organ Culture 132:359−70

doi: 10.1007/s11240-017-1335-z
[43]

Wang X, Guo R, Tu M, Wang D, Guo C, et al. 2017. Ectopic expression of the wild grape WRKY transcription factor VqWRKY52 in Arabidopsis thaliana enhances resistance to the biotrophic pathogen powdery mildew but not to the necrotrophic pathogen Botrytis cinerea. Frontiers in Plant Science 8:97

doi: 10.3389/fpls.2017.00097
[44]

Wang X, Tu M, Wang D, Liu J, Li Y, et al. 2018. CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnology Journal 16:844−55

doi: 10.1111/pbi.12832
[45]

Yin W, Wang X, Liu H, Wang Y, Nocker S, et al. 2022. Overexpression of VqWRKY31 enhances powdery mildew resistance in grapevine by promoting salicylic acid signaling and specific metabolite synthesis. Horticulture Research 9:uhab064

doi: 10.1093/hr/uhab064
[46]

Schnee S, Viret O, Gindro K. 2008. Role of stilbenes in the resistance of grapevine to powdery mildew. Physiological and Molecular Plant Pathology 72:128−33

doi: 10.1016/j.pmpp.2008.07.002
[47]

Langcake P, Pryce RJ. 1976. The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiological Plant Pathology 9:77−86

doi: 10.1016/0048-4059(76)90077-1
[48]

Qu J, Dry I, Liu L, Guo Z, Yin L. 2021. Transcriptional profiling reveals multiple defense responses in downy mildew-resistant transgenic grapevine expressing a TIR-NBS-LRR gene located at the MrRUN1/MrRPV1 locus. Horticulture Research 8:161

doi: 10.1038/s41438-021-00597-w
[49]

Vannozzi A, Wong DCJ, Höll J, Hmmam I, Matus JT, et al. 2018. Combinatorial Regulation of Stilbene Synthase Genes by WRKY and MYB Transcription Factors in Grapevine (Vitis vinifera L. ). Plant and Cell Physiology 59:1043−59

doi: 10.1093/pcp/pcy045
[50]

Wang D, Jiang C, Liu W, Wang Y. 2020. The WRKY53 transcription factor enhances stilbene synthesis and disease resistance by interacting with MYB14 and MYB15 in Chinese wild grape. Journal of Experimental Botany 71(10):3211−26

doi: 10.1093/jxb/eraa097
[51]

Jiang J, Xi H, Dai Z, Lecourieux F, Yuan L, et al. 2018. VvWRKY8 represses stilbene synthase genes through direct interaction with VvMYB14 to control resveratrol biosynthesis in grapevine. Journal of Experimental Botany 70:715−29

[52]

Che Y, Zhang Z, Zhu D, Hao J, Hou L, et al. 2019. VvWRKY13 from Vitis vinifera negatively modulates salinity tolerance. Plant Cell, Tissue and Organ Culture (PCTOC) 139:455−65

doi: 10.1007/s11240-019-01620-8
[53]

Hou L, Fan X, Hao J, Liu G, Zhang Z, et al. 2020. Negative regulation by transcription factor VvWRKY13 in drought stress of Vitis vinifera L. Plant Physiology and Biochemistry 148:114−21

doi: 10.1016/j.plaphy.2020.01.008
[54]

Mzid R, Zorrig W, Ben Ayed R, Ben Hamed K, Ayadi M, et al. 2018. The grapevine VvWRKY2 gene enhances salt and osmotic stress tolerance in transgenic Nicotiana tabacum. 3 Biotech 8:277

doi: 10.1007/s13205-018-1301-4
[55]

Zhang L, Cheng J, Sun X, Zhao T, Li M, et al. 2018. Overexpression of VaWRKY14 increases drought tolerance in Arabidopsis by modulating the expression of stress-related genes. Plant Cell Reports 37:1159−72

doi: 10.1007/s00299-018-2302-9
[56]

Zhang Y, Yao J, Feng H, Jiang J, Fan X, et al. 2019. Identification of the defense-related gene VdWRKY53 from the wild grapevine Vitis davidii using RNA sequencing and ectopic expression analysis in Arabidopsis. Hereditas 156:14

doi: 10.1186/s41065-019-0089-5
[57]

Sun X, Zhang L, Wong DCJ, Wang Y, Zhu Z, et al. 2019. The ethylene response factor VaERF092 from Amur grape regulates the transcription factor VaWRKY33, improving cold tolerance. The Plant Journal 99:988−1002

doi: 10.1111/tpj.14378
[58]

Yu Y, Xu W, Wang J, Wang L, Yao W, et al. 2013. The Chinese wild grapevine (Vitis pseudoreticulata) E3 ubiquitin ligase Erysiphe necator-induced RING finger protein 1 (EIRP1) activates plant defense responses by inducing proteolysis of the VpWRKY11 transcription factor. New Phytologist 200:834−46

doi: 10.1111/nph.12418
[59]

Zhu Z, Shi J, Cao J, He M, Wang Y. 2012. VpWRKY3, a biotic and abiotic stress-related transcription factor from the Chinese wildVitis pseudoreticulata. Plant Cell Reports 31:2109−20

doi: 10.1007/s00299-012-1321-1
[60]

Mzid R, Marchive C, Blancard D, Deluc L, Barrieu F, et al. 2007. Overexpression of VvWRKY2 in tobacco enhances broad resistance to necrotrophic fungal pathogens. Physiologia Plantarum 131:434−47

doi: 10.1111/j.1399-3054.2007.00975.x