[1] |
Casler MD, Sosa S, Hoffman L, Mayton H, Ernst C, et al. 2017. Biomass yield of switchgrass cultivars under high- versus low-input conditions. Crop Science 57:821−32 doi: 10.2135/cropsci2016.08.0698 |
[2] |
Perrin R, Vogel KP, Schmer MR, Mitchell RB. 2008. Farm-scale production cost of switchgrass for biomass. BioEnergy Research 1:91−97 doi: 10.1007/s12155-008-9005-y |
[3] |
Bhandari HS, Saha MC, Mascia PN, Fasoula VA, Bouton JH. 2010. Variation among half-sib families and heritability for biomass yield and other traits in lowland switchgrass (Panicum virgatum L.). Crop Science 50:2355−63 doi: 10.2135/cropsci2010.02.0109 |
[4] |
Price DL, Casler MD. 2014. Inheritance of secondary morphological traits for among-and-within-family selection in upland tetraploid switchgrass. Crop Science 54:646−53 doi: 10.2135/cropsci2013.04.0273 |
[5] |
Zhang Y, Zhang N. 2018. Imaging technologies for plant high-throughput phenotyping: a review. Frontiers of Agricultural Science and Engineering 5:406−19 doi: 10.15302/J-FASE-2018242 |
[6] |
Kim M, Lee C, Hong S, Kim SL, Baek JH, et al. 2021. High-throughput phenotyping methods for breeding drought-tolerant crops. International Journal of Molecular Sciences 22:8266 doi: 10.3390/ijms22158266 |
[7] |
Fahlgren N, Feldman M, Gehan MA, Wilson MS, Shyu C, et al. 2015. A versatile phenotyping system and analytics platform reveals diverse temporal responses to water availability in Setaria. Molecular Plant 8:1520−35 doi: 10.1016/j.molp.2015.06.005 |
[8] |
Salas Fernandez MG, Bao Y, Tang L, Schnable PS. 2017. A high-throughput, field-based phenotyping technology for tall biomass crops. Plant Physiology 174:2008−22 doi: 10.1104/pp.17.00707 |
[9] |
Tolley S, Yang Y, Mohammadi M. 2020. High-throughput phenotyping identifies plant growth differences under well-watered and drought treatments. Journal of Integrative Agriculture 19:2429−38 doi: 10.1016/S2095-3119(20)63154-9 |
[10] |
Souza A, Yang Y. 2021. High-throughput corn image segmentation and trait extraction using chlorophyll fluorescence images. Plant Phenomics 2021:9792582 doi: 10.34133/2021/9792582 |
[11] |
Volpato L, Pinto F, González-Pérez L, Thompson IG, Borém A, et al. 2021. High throughput field phenotyping for plant height using UAV-based RGB imagery in wheat breeding lines: feasibility and validation. Frontiers in Plant Science 12:591587 doi: 10.3389/fpls.2021.591587 |
[12] |
Yang W, Guo Z, Huang C, Duan L, Chen G, et al. 2014. Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nature Communications 5:5087 doi: 10.1038/ncomms6087 |
[13] |
Campbell MT, Knecht AC, Berger B, Brien CJ, Wang D, et al. 2015. Integrating image-based phenomics and association analysis to dissect the genetic architecture of temporal salinity responses in rice. Plant Physiology 168:1476−89 doi: 10.1104/pp.15.00450 |
[14] |
Kim SL, Kim N, Lee H, Lee E, Cheon KS, et al. 2020. High-throughput phenotyping platform for analyzing drought tolerance in rice. Planta 252:38 doi: 10.1007/s00425-020-03436-9 |
[15] |
Ge Y, Bai G, Stoerger V, Schnable JC. 2016. Temporal dynamics of maize plant growth, water use, and leaf water content using automated high throughput RGB and hyperspectral imaging. Computers and Electronics in Agriculture 127:625−32 doi: 10.1016/j.compag.2016.07.028 |
[16] |
Borra-Serrano I, De Swaef T, Aper J, Ghesquiere A, Mertens K, et al. 2018. Towards an objective evaluation of persistency of Lolium perenne swards using UAV imagery. Euphytica 214:142 doi: 10.1007/s10681-018-2208-1 |
[17] |
Jayasinghe C, Badenhorst P, Wang J, Jacobs J, Spangenberg G, et al. 2019. An object-based image analysis approach to assess persistence of perennial ryegrass (Lolium perenne L.) in pasture breeding. Agronomy 9:501 doi: 10.3390/agronomy9090501 |
[18] |
Ball KR, Power SA, Brien C, Woodin S, Jewell N, et al. 2020. High-throughput, image-based phenotyping reveals nutrient-dependent growth facilitation in a grass-legume mixture. PLoS One 15:e0239673 doi: 10.1371/journal.pone.0239673 |
[19] |
Taylor M, Tornqvist CE, Zhao X, Doerge RW, Casler MD, et al. 2019. Identification of quantitative trait loci for plant height, crown diameter, and plant biomass in a pseudo-F2 population of switchgrass. BioEnergy Research 12:267−74 doi: 10.1007/s12155-019-09978-5 |
[20] |
Kawamura K, Asai H, Yasuda T, Khanthavong P, Soisouvanh P, Phongchanmixay S. 2020. Field phenotyping of plant height in an upland rice field in Laos using low-cost small unmanned aerial vehicles (UAVs). Plant Production Science 23:452−65 doi: 10.1080/1343943X.2020.1766362 |
[21] |
Wang X, Zhang R, Song W, Han L, Liu X, et al. 2019. Dynamic plant height QTL revealed in maize through remote sensing phenotyping using a high-throughput unmanned aerial vehicle (UAV). Scientific Reports 9:3458 doi: 10.1038/s41598-019-39448-z |
[22] |
Price DL, Casler MD. 2014. Predictive relationships between plant morphological traits and biomass yield in switchgrass. Crop Science 54:637−645 doi: 10.2135/cropsci2013.04.0272 |
[23] |
Pham AT, Maurer A, Pillen K, Brien C, Dowling K, et al. 2019. Genome-wide association of barley plant growth under drought stress using a nested association mapping population. BMC Plant Biology 19:134 doi: 10.1186/s12870-019-1723-0 |
[24] |
Wu D, Guo Z, Ye J, Feng H, Liu J, et al. 2019. Combining high-throughput micro-CT-RGB phenotyping and genome-wide association study to dissect the genetic architecture of tiller growth in rice. Journal of Experimental Botany 70:545−56 doi: 10.1093/jxb/ery373 |
[25] |
Vogel KP, Brejda JJ, Walters DT, Buxton DR. 2002. Switchgrass biomass production in the Midwest USA: Harvest and nitrogen management. Agronomy Journal 94:413−20 doi: 10.2134/agronj2002.0413 |