[1] |
Andrady AL. 2015. Plastics and Environmental Sustainability. Hoboken, NJ: John Wiley & Sons. https://doi.org/10.1002/9781119009405 |
[2] |
Andrady AL, Neal MA. 2009. Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences 364:1977−84 doi: 10.1098/rstb.2008.0304 |
[3] |
Geyer R, Jambeck JR, Law KL. 2017. Production, use, and fate of all plastics ever made. Science Advances 3:1207−21 doi: 10.1126/sciadv.1700782 |
[4] |
Sutherland WJ, Aveling R, Brooks TM, Clout M, Dicks LV, et al. 2014. A horizon scan of global conservation issues for 2014. Trends in Ecology & Evolution 29:15−22 doi: 10.1016/j.tree.2013.11.004 |
[5] |
Editorial. 2018. The future of plastic. Nature Communications 9:2157 doi: 10.1038/s41467-018-04565-2 |
[6] |
Kyrikou I, Briassoulis D, Environment t. 2007. Biodegradation of agricultural plastic films: a critical review. Journal of Polymers and the Environment 15:125−50 doi: 10.1007/s10924-007-0053-8 |
[7] |
Gewert B, Plassmann MM, MacLeod M. 2015. Pathways for degradation of plastic polymers floating in the marine environment. Environmental Science: Processes & Impacts 17:1513−21 doi: 10.1039/c5em00207a |
[8] |
Al-Salem SM, Lettieri P, Baeyens J. 2009. Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Management 29:2625−43 doi: 10.1016/j.wasman.2009.06.004 |
[9] |
Banerjee A, Chatterjee K, Madras G. 2014. Enzymatic degradation of polymers: a brief review. Materials Science and Technology 30:567−73 doi: 10.1179/1743284713Y.0000000503 |
[10] |
Gu J. 2003. Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. International Biodeterioration Biodegradation 52:69−91 doi: 10.1016/S0964-8305(02)00177-4 |
[11] |
Luckachan GE, Pillai CKS. 2011. Biodegradable polymers-a review on recent trends and emerging perspectives. Journal of Polymers and the Environment 19:637−76 doi: 10.1007/s10924-011-0317-1 |
[12] |
Elvers D, Song CH, Steinbüchel A, Leker J. 2016. Technology trends in biodegradable polymers: evidence from patent analysis. Polymer Reviews 56:584−606 doi: 10.1080/15583724.2015.1125918 |
[13] |
Song JH, Murphy RJ, Narayan R, Davies GBH. 2009. Biodegradable and compostable alternatives to conventional plastics. Philosophical Transactions of the Royal Society B: Biological Sciences 364:2127−39 doi: 10.1098/rstb.2008.0289 |
[14] |
Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S. 2010. Poly-Lactic Acid: production, applications, nanocomposites, and release studies. Comprehensive Reviews in Food Science Food Safety 9:552−71 doi: 10.1111/j.1541-4337.2010.00126.x |
[15] |
Dusselier M, Van Wouwe P, Dewaele A, Jacobs PA, Sels BF. 2015. Shape-selective zeolite catalysis for bioplastics production. Science 349:78−80 doi: 10.1126/science.aaa7169 |
[16] |
Cosate de Andrade MF, Souza PMS, Cavalett O, Morales AR. 2016. Life cycle assessment of poly (lactic acid) (PLA): Comparison between chemical recycling, mechanical recycling and composting. Journal of Polymers and the Environment 24:372−84 doi: 10.1007/s10924-016-0787-2 |
[17] |
Kaplan AM, Darby RT, Greenberger M, Rodgers M. 1968. Microbial deterioration of polyurethane systems. Developments in Industrial Microbiology 82:362−71 |
[18] |
Otake Y, Kobayashi T, Asabe H, Murakami N, Ono K. 1995. Biodegradation of low-density polyethylene, polystyrene, polyvinyl chloride, and urea formaldehyde resin buried under soil for over 32 years. Journal of Applied Polymer Science 56:1789−96 doi: 10.1002/app.1995.070561309 |
[19] |
Nakamiya K, Sakasita G, Ooi T, Kinoshita S. 1997. Enzymatic degradation of polystyrene by hydroquinone peroxidase of Azotobacter beijerinckii HM121. Journal of Fermentation and Bioengineering 84:480−82 doi: 10.1016/S0922-338X(97)82013-2 |
[20] |
Sivan A. 2011. New perspectives in plastic biodegradation. Current Opinion in Biotechnology 22:422−26 doi: 10.1016/j.copbio.2011.01.013 |
[21] |
Arkatkar A, Arutchelvi J, Bhaduri S, Uppara PV, Doble M. 2009. Degradation of unpretreated and thermally pretreated polypropylene by soil consortia. International Biodeterioration & Biodegradation 63:106−11 doi: 10.1016/j.ibiod.2008.06.005 |
[22] |
Zafar U, Houlden A, Robson GD. 2013. Fungal communities associated with the biodegradation of polyester polyurethane buried under compost at different temperatures. Applied and Environmental Microbiology 79:7313−24 doi: 10.1128/AEM.02536-13 |
[23] |
Zafar U, Nzeram P, Langarica-Fuentes A, Houlden A, Heyworth A, et al. 2014. Biodegradation of polyester polyurethane during commercial composting and analysis of associated fungal communities. Bioresource Technology 158:374−77 doi: 10.1016/j.biortech.2014.02.077 |
[24] |
Yang Y, Yang J, Wu W, Zhao J, Song Y, et al. 2015. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 2. Role of gut microorganisms. Environmental Science & Technology 49:12087−93 doi: 10.1021/acs.est.5b02663 |
[25] |
Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, et al. 2016. A bacterium that degrades and assimilates poly (ethylene terephthalate). Science 351:1196−99 doi: 10.1126/science.aad6359 |
[26] |
Khan S, Nadir S, Shah ZU, Shah AA, Karunarathna SC, et al. 2017. Biodegradation of polyester polyurethane by Aspergillus tubingensis. Environmental Pollution 225:469−80 doi: 10.1016/j.envpol.2017.03.012 |
[27] |
Zumstein MT, Schintlmeister A, Nelson TF, Baumgartner R, Woebken D, et al. 2018. Biodegradation of synthetic polymers in soils: Tracking carbon into CO2 and microbial biomass. Science Advances 4:eaas9024 doi: 10.1126/sciadv.aas9024 |
[28] |
Mueller RJ. 2006. Biological degradation of synthetic polyesters — Enzymes as potential catalysts for polyester recycling. Process Biochemistry 41:2124−28 doi: 10.1016/j.procbio.2006.05.018 |
[29] |
Cregut M, Bedas M, Durand MJ, Thouand G. 2013. New insights into polyurethane biodegradation and realistic prospects for the development of a sustainable waste recycling process. Biotechnology Advances 31:1634−47 doi: 10.1016/j.biotechadv.2013.08.011 |
[30] |
Tokiwa Y, Calabia BP, Ugwu CU, Aiba S. 2009. Biodegradability of plastics. International Journal of Molecular Sciences 10:3722−42 doi: 10.3390/ijms10093722 |
[31] |
Wei R, Zimmermann W. 2017. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we. Microbial Biotechnology 10:1308−22 doi: 10.1111/1751-7915.12710 |
[32] |
Fujisawa M, Hirai H, Nishida T. 2001. Degradation of polyethylene and nylon-66 by the laccase-mediator system. Journal of Polymers the Environment 9:103−8 doi: 10.1023/A:1020472426516 |
[33] |
Suhas, Carrott PJM, Ribeiro Carrott MML. 2007. Lignin–from natural adsorbent to activated carbon: a review. Bioresource Technology 98:2301−12 doi: 10.1016/j.biortech.2006.08.008 |
[34] |
Santo M, Weitsman R, Sivan A. 2013. The role of the copper-binding enzyme – laccase – in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. International Biodeterioration Biodegradation 84:204−10 doi: 10.1016/j.ibiod.2012.03.001 |
[35] |
Sowmya H, Ramalingappa M, Thippeswamy B. 2014. Biodegradation of polyethylene by Bacillus cereus. Advances in Polymer Science and Technology 4:28−32 |
[36] |
Restrepo-Flórez JM, Bassi A, Thompson MR. 2014. Microbial degradation and deterioration of polyethylene – A review. International Biodeterioration & Biodegradation 88:83−90 doi: 10.1016/j.ibiod.2013.12.014 |
[37] |
Seymour I. 1992. OPEC in the 1990s. Energy Policy 20:909−12 doi: 10.1016/0301-4215(92)90177-4 |
[38] |
Crabbe JR, Campbell JR, Thompson L, Walz SL, Schultz WW. 1994. Biodegradation of a colloidal ester-based polyurethane by soil fungi. International Biodeterioration Biodegradation 33:103−13 doi: 10.1016/0964-8305(94)90030-2 |
[39] |
Nakajima-Kambe T, Shigeno-Akutsu Y, Nomura N, Onuma F, Nakahara T. 1999. Microbial degradation of polyurethane, polyester polyurethanes and polyether polyurethanes. Applied Microbiology and Biotechnology 51:134−40 doi: 10.1007/s002530051373 |
[40] |
Ii RCB, Norton WN, Howard GT. 1998. Adherence and growth of a Bacillus species on an insoluble polyester polyurethane. International Biodeterioration & Biodegradation 42:63−73 doi: 10.1016/S0964-8305(98)00048-1 |
[41] |
Akutsu Y, Nakajima-Kambe T, Nomura N, Nakahara T. 1998. Purification and properties of a polyester polyurethane-degrading enzyme from Comamonas acidovorans TB-35. Applied and Environmental Microbiology 64:62−67 doi: 10.1128/AEM.64.1.62-67.1998 |
[42] |
Howard GT, Blake RC. 1998. Growth of Pseudomonas fluorescens on a polyester–polyurethane and the purification and characterization of a polyurethanase–protease enzyme. International Biodeterioration & Biodegradation 42:213−20 doi: 10.1016/S0964-8305(98)00051-1 |
[43] |
Allen AB, Hilliard NP, Howard GT. 1999. Purification and characterization of a solublepolyurethane degrading enzyme from Comamonasacidovorans. International Biodeterioration & Biodegradation 43:37−41 doi: 10.1016/S0964-8305(98)00066-3 |
[44] |
Howard GT. 2002. Biodegradation of polyurethane: a review. International Biodeterioration Biodegradation 49:245−52 doi: 10.1016/S0964-8305(02)00051-3 |
[45] |
Pathirana R. 1984. Studies on polyurethane deteriorating fungi. II. An examination of their enzyme activities. International Biodeterioration 20:163−68 |
[46] |
Webb HK, Arnott J, Crawford RJ, Ivanova EP. 2012. Plastic degradation and its environmental implications with special reference to poly (ethylene terephthalate). Polymers 5:1−18 doi: 10.3390/polym5010001 |
[47] |
Ronkvist ÅM, Xie W, Lu W, Gross RA. 2009. Cutinase-catalyzed hydrolysis of poly (ethylene terephthalate). Macromolecules 42:5128−38 doi: 10.1021/ma9005318 |
[48] |
Vertommen MAME, Nierstrasz VA, van der Veer M, Warmoeskerken MMCG. 2005. Enzymatic surface modification of poly(ethylene terephthalate). Journal of Biotechnology 120:376−86 doi: 10.1016/j.jbiotec.2005.06.015 |
[49] |
Eberl A, Heumann S, Brückner T, Araujo R, Cavaco-Paulo A, et al. 2009. Enzymatic surface hydrolysis of poly(ethylene terephthalate) and bis(benzoyloxyethyl) terephthalate by lipase and cutinase in the presence of surface active molecules. Journal of Biotechnology 143:207−12 doi: 10.1016/j.jbiotec.2009.07.008 |
[50] |
Liebminger S, Eberl A, Sousa F, Heumann S, Fischer-Colbrie G, et al. 2007. Hydrolysis of PET and bis-(benzoyloxyethyl) terephthalate with a new polyesterase from Penicillium citrinum. Biocatalysis Biotransformation 25:171−7 doi: 10.1080/10242420701379734 |
[51] |
Araújo R, Silva C, O’Neill A, Micaelo N, Guebitz G, et al. 2007. Tailoring cutinase activity towards polyethylene terephthalate and polyamide 6,6 fibers. Journal of Biotechnology 128:849−57 doi: 10.1016/j.jbiotec.2006.12.028 |
[52] |
Herrero Acero E, Ribitsch D, Dellacher A, Zitzenbacher S, Marold A, et al. 2013. Surface engineering of a cutinase from Thermobifida cellulosilytica for improved polyester hydrolysis. Biotechnology and Bioengineering 110:2581−90 doi: 10.1002/bit.24930 |
[53] |
Haberman Y, Karns R, Dexheimer PJ, Schirmer M, Somekh J, et al. 2019. Ulcerative colitis mucosal transcriptomes reveal mitochondriopathy and personalized mechanisms underlying disease severity and treatment response. Nature Communications 10:38 doi: 10.1038/s41467-018-07841-3 |
[54] |
Barth M, Wei R, Oeser T, Then J, Schmidt J, et al. 2015. Enzymatic hydrolysis of polyethylene terephthalate films in an ultrafiltration membrane reactor. Journal of Membrane Science 494:182−87 doi: 10.1016/j.memsci.2015.07.030 |
[55] |
Panke S, Wubbolts MG. 2002. Enzyme technology and bioprocess engineering. Current Opinion in Biotechnology 13:111−16 doi: 10.1016/S0958-1669(02)00302-6 |
[56] |
van Beilen JB, Li Z. 2002. Enzyme technology: an overview. Current Opinion in Biotechnology 13:338−44 doi: 10.1016/S0958-1669(02)00334-8 |
[57] |
Hansen CA. 2001. The application of biotechnology to industrial sustainability. |
[58] |
Kirst HA. 2002. Introduction to the macrolide antibiotics. In Macrolide antibiotics, eds. Schönfeld W, Kirst HA. Switzerland: Birkhäuser, Basel, Springer. pp. 1−13 https://doi.org/10.1007/978-3-0348-8105-0_1 |
[59] |
Gross RA, Kumar A, Kalra B. 2001. Polymer synthesis by in vitro enzyme catalysis. Chemical Reviews 101:2097−124 doi: 10.1021/cr0002590 |
[60] |
Kobayashi S, Uyama H, Kimura S. 2001. Enzymatic polymerization. Chemical Reviews 101:3793−818 doi: 10.1021/cr990121l |
[61] |
Berkane C, Mezoul G, Lalot T, Brigodiot M, Maréchal E. 1997. Lipase-catalyzed polyester synthesis in organic medium. Study of ring−chain equilibrium. Macromolecules 30:7729−34 doi: 10.1021/ma970745y |
[62] |
Idris A, Bukhari A. 2012. Immobilized Candida antarctica lipase B: Hydration, stripping off and application in ring opening polyester synthesis. Biotechnology Advances 30:550−63 doi: 10.1016/j.biotechadv.2011.10.002 |
[63] |
Gan Z, Yu D, Zhong Z, Liang Q, Jing X. 1999. Enzymatic degradation of poly(ε-caprolactone)/poly(DL-lactide) blends in phosphate buffer solution. Polymer 40:2859−62 doi: 10.1016/S0032-3861(98)00549-7 |
[64] |
Pastorino L, Pioli F, Zilli M, Converti A, Nicolini C. 2004. Lipase-catalyzed degradation of poly(ε-caprolactone). Enzyme and Microbial Technology 35:321−26 doi: 10.1016/j.enzmictec.2004.05.005 |
[65] |
Branco dos Santos F, de Vos WM, Teusink B. 2013. Towards metagenome-scale models for industrial applications — the case of Lactic Acid Bacteria. Current Opinion in Biotechnology 24:200−6 doi: 10.1016/j.copbio.2012.11.003 |
[66] |
Hu X, Thumarat U, Zhang X, Tang M, Kawai F. 2010. Diversity of polyester-degrading bacteria in compost and molecular analysis of a thermoactive esterase from Thermobifida alba AHK119. Applied Microbiology Biotechnology 87:771−79 doi: 10.1007/s00253-010-2555-x |
[67] |
Suyama T, Shigematsu T, Takaichi S, Nodasaka Y, Fujikawa S, et al. 1999. Roseateles depolymerans gen. nov., sp. nov., a new bacteriochlorophyll a-containing obligate aerobe belonging to the β-subclass of the Proteobacteria. International Journal of Systematic and Evolutionary Microbiology 49:449−57 doi: 10.1099/00207713-49-2-449 |
[68] |
Ribitsch D, Acero EH, Greimel K, Eiteljoerg I, Trotscha E, et al. 2012. Characterization of a new cutinase from Thermobifida alba for PET-surface hydrolysis. Biocatalysis and Biotransformation 30:2−9 doi: 10.3109/10242422.2012.644435 |
[69] |
Shinozaki Y, Morita T, Cao X, Yoshida S, Koitabashi M, et al. 2013. Biodegradable plastic-degrading enzyme from Pseudozyma antarctica: cloning, sequencing, and characterization. Applied Microbiology Biotechnology Advances 97:2951−59 doi: 10.1007/s00253-012-4188-8 |
[70] |
Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, et al. 2012. Engineering the third wave of biocatalysis. Nature 485:185−94 doi: 10.1038/nature11117 |
[71] |
Farinas ET, Bulter T, Arnold FH. 2001. Directed enzyme evolution. Current Opinion in Biotechnology 12:545−51 doi: 10.1016/S0958-1669(01)00261-0 |
[72] |
Jaeger KE, Eggert T, Eipper A, Reetz M. 2001. Directed evolution and the creation of enantioselective biocatalysts. Applied Microbiology and Biotechnology 55:519−30 doi: 10.1007/s002530100643 |
[73] |
Motherwell WB, Bingham MJ, Six Y. 2001. Recent progress in the design and synthesis of artificial enzymes. Tetrahedron 22:4663−86 doi: 10.1016/S0040-4020(01)00288-5 |
[74] |
Davids T, Schmidt M, Böttcher D, Bornscheuer UT. 2013. Strategies for the discovery and engineering of enzymes for biocatalysis. Current Opinion in Chemical Biology 17:215−20 doi: 10.1016/j.cbpa.2013.02.022 |
[75] |
Fox RJ, Davis SC, Mundorff EC, Newman LM, Gavrilovic V, et al. 2007. Improving catalytic function by ProSAR-driven enzyme evolution. Nature Biotechnology 25:338−44 doi: 10.1038/nbt1286 |
[76] |
Damborsky J, Brezovsky J. 2009. Computational tools for designing and engineering biocatalysts. Current Opinion in Chemical Biology 13:26−34 doi: 10.1016/j.cbpa.2009.02.021 |
[77] |
Kries H, Blomberg R, Hilvert D. 2013. De novo enzymes by computational design. Current Opinion in Chemical Biology 17:221−28 doi: 10.1016/j.cbpa.2013.02.012 |
[78] |
Jäckel C, Hilvert D. 2010. Biocatalysts by evolution. Current Opinion in Biotechnology 21:753−59 doi: 10.1016/j.copbio.2010.08.008 |
[79] |
Shanklin J. 2008. Enzyme engineering. Advances in Plant Biochemistry and Molecular Biology 1:29−47 doi: 10.1016/S1755-0408(07)01002-8 |
[80] |
Hood EE. 2002. From green plants to industrial enzymes. Enzyme and Microbial Technology 30:279−83 doi: 10.1016/S0141-0229(01)00502-6 |
[81] |
Illanes A, Cauerhff A, Wilson L, Castro GR. 2012. Recent trends in biocatalysis engineering. Bioresource Technology 115:48−57 doi: 10.1016/j.biortech.2011.12.050 |
[82] |
Torres S, Pandey A, Castro GR. 2011. Organic solvent adaptation of Gram positive bacteria: applications and biotechnological potentials. Biotechnology Advances 29:442−52 doi: 10.1016/j.biotechadv.2011.04.002 |
[83] |
Gaspers PB, Gast AP, Robertson CR. 1995. Enzymes on immobilized substrate surfaces: reaction. Journal of Colloid and Interface Science 172:518−29 doi: 10.1006/jcis.1995.1283 |
[84] |
Judd S. 2008. The status of membrane bioreactor technology. Trends in Biotechnology 26:109−16 doi: 10.1016/j.tibtech.2007.11.005 |
[85] |
Carstensen F, Apel A, Wessling M. 2012. In situ product recovery: Submerged membranes vs. external loop membranes. Journal of Membrane Science 394−395:1−36 doi: 10.1016/j.memsci.2011.11.029 |
[86] |
Ferreira AM, Passos H, Okafuji A, Tavares APM, Ohno H, et al. 2018. An integrated process for enzymatic catalysis allowing product recovery and enzyme reuse by applying thermoreversible aqueous biphasic systems. Green Chemistry 20:1218−23 doi: 10.1039/C7GC03880A |