[1]
|
Andrady AL. 2015. Plastics and Environmental Sustainability. Hoboken, NJ: John Wiley & Sons. https://doi.org/10.1002/9781119009405
|
[2]
|
Andrady AL, Neal MA. 2009. Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences 364:1977−84 doi: 10.1098/rstb.2008.0304
CrossRef Google Scholar
|
[3]
|
Geyer R, Jambeck JR, Law KL. 2017. Production, use, and fate of all plastics ever made. Science Advances 3:1207−21 doi: 10.1126/sciadv.1700782
CrossRef Google Scholar
|
[4]
|
Sutherland WJ, Aveling R, Brooks TM, Clout M, Dicks LV, et al. 2014. A horizon scan of global conservation issues for 2014. Trends in Ecology & Evolution 29:15−22 doi: 10.1016/j.tree.2013.11.004
CrossRef Google Scholar
|
[5]
|
Editorial. 2018. The future of plastic. Nature Communications 9:2157 doi: 10.1038/s41467-018-04565-2
CrossRef Google Scholar
|
[6]
|
Kyrikou I, Briassoulis D, Environment t. 2007. Biodegradation of agricultural plastic films: a critical review. Journal of Polymers and the Environment 15:125−50 doi: 10.1007/s10924-007-0053-8
CrossRef Google Scholar
|
[7]
|
Gewert B, Plassmann MM, MacLeod M. 2015. Pathways for degradation of plastic polymers floating in the marine environment. Environmental Science: Processes & Impacts 17:1513−21 doi: 10.1039/c5em00207a
CrossRef Google Scholar
|
[8]
|
Al-Salem SM, Lettieri P, Baeyens J. 2009. Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Management 29:2625−43 doi: 10.1016/j.wasman.2009.06.004
CrossRef Google Scholar
|
[9]
|
Banerjee A, Chatterjee K, Madras G. 2014. Enzymatic degradation of polymers: a brief review. Materials Science and Technology 30:567−73 doi: 10.1179/1743284713Y.0000000503
CrossRef Google Scholar
|
[10]
|
Gu J. 2003. Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. International Biodeterioration Biodegradation 52:69−91 doi: 10.1016/S0964-8305(02)00177-4
CrossRef Google Scholar
|
[11]
|
Luckachan GE, Pillai CKS. 2011. Biodegradable polymers-a review on recent trends and emerging perspectives. Journal of Polymers and the Environment 19:637−76 doi: 10.1007/s10924-011-0317-1
CrossRef Google Scholar
|
[12]
|
Elvers D, Song CH, Steinbüchel A, Leker J. 2016. Technology trends in biodegradable polymers: evidence from patent analysis. Polymer Reviews 56:584−606 doi: 10.1080/15583724.2015.1125918
CrossRef Google Scholar
|
[13]
|
Song JH, Murphy RJ, Narayan R, Davies GBH. 2009. Biodegradable and compostable alternatives to conventional plastics. Philosophical Transactions of the Royal Society B: Biological Sciences 364:2127−39 doi: 10.1098/rstb.2008.0289
CrossRef Google Scholar
|
[14]
|
Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S. 2010. Poly-Lactic Acid: production, applications, nanocomposites, and release studies. Comprehensive Reviews in Food Science Food Safety 9:552−71 doi: 10.1111/j.1541-4337.2010.00126.x
CrossRef Google Scholar
|
[15]
|
Dusselier M, Van Wouwe P, Dewaele A, Jacobs PA, Sels BF. 2015. Shape-selective zeolite catalysis for bioplastics production. Science 349:78−80 doi: 10.1126/science.aaa7169
CrossRef Google Scholar
|
[16]
|
Cosate de Andrade MF, Souza PMS, Cavalett O, Morales AR. 2016. Life cycle assessment of poly (lactic acid) (PLA): Comparison between chemical recycling, mechanical recycling and composting. Journal of Polymers and the Environment 24:372−84 doi: 10.1007/s10924-016-0787-2
CrossRef Google Scholar
|
[17]
|
Kaplan AM, Darby RT, Greenberger M, Rodgers M. 1968. Microbial deterioration of polyurethane systems. Developments in Industrial Microbiology 82:362−71
Google Scholar
|
[18]
|
Otake Y, Kobayashi T, Asabe H, Murakami N, Ono K. 1995. Biodegradation of low-density polyethylene, polystyrene, polyvinyl chloride, and urea formaldehyde resin buried under soil for over 32 years. Journal of Applied Polymer Science 56:1789−96 doi: 10.1002/app.1995.070561309
CrossRef Google Scholar
|
[19]
|
Nakamiya K, Sakasita G, Ooi T, Kinoshita S. 1997. Enzymatic degradation of polystyrene by hydroquinone peroxidase of Azotobacter beijerinckii HM121. Journal of Fermentation and Bioengineering 84:480−82 doi: 10.1016/S0922-338X(97)82013-2
CrossRef Google Scholar
|
[20]
|
Sivan A. 2011. New perspectives in plastic biodegradation. Current Opinion in Biotechnology 22:422−26 doi: 10.1016/j.copbio.2011.01.013
CrossRef Google Scholar
|
[21]
|
Arkatkar A, Arutchelvi J, Bhaduri S, Uppara PV, Doble M. 2009. Degradation of unpretreated and thermally pretreated polypropylene by soil consortia. International Biodeterioration & Biodegradation 63:106−11 doi: 10.1016/j.ibiod.2008.06.005
CrossRef Google Scholar
|
[22]
|
Zafar U, Houlden A, Robson GD. 2013. Fungal communities associated with the biodegradation of polyester polyurethane buried under compost at different temperatures. Applied and Environmental Microbiology 79:7313−24 doi: 10.1128/AEM.02536-13
CrossRef Google Scholar
|
[23]
|
Zafar U, Nzeram P, Langarica-Fuentes A, Houlden A, Heyworth A, et al. 2014. Biodegradation of polyester polyurethane during commercial composting and analysis of associated fungal communities. Bioresource Technology 158:374−77 doi: 10.1016/j.biortech.2014.02.077
CrossRef Google Scholar
|
[24]
|
Yang Y, Yang J, Wu W, Zhao J, Song Y, et al. 2015. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 2. Role of gut microorganisms. Environmental Science & Technology 49:12087−93 doi: 10.1021/acs.est.5b02663
CrossRef Google Scholar
|
[25]
|
Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, et al. 2016. A bacterium that degrades and assimilates poly (ethylene terephthalate). Science 351:1196−99 doi: 10.1126/science.aad6359
CrossRef Google Scholar
|
[26]
|
Khan S, Nadir S, Shah ZU, Shah AA, Karunarathna SC, et al. 2017. Biodegradation of polyester polyurethane by Aspergillus tubingensis. Environmental Pollution 225:469−80 doi: 10.1016/j.envpol.2017.03.012
CrossRef Google Scholar
|
[27]
|
Zumstein MT, Schintlmeister A, Nelson TF, Baumgartner R, Woebken D, et al. 2018. Biodegradation of synthetic polymers in soils: Tracking carbon into CO2 and microbial biomass. Science Advances 4:eaas9024 doi: 10.1126/sciadv.aas9024
CrossRef Google Scholar
|
[28]
|
Mueller RJ. 2006. Biological degradation of synthetic polyesters — Enzymes as potential catalysts for polyester recycling. Process Biochemistry 41:2124−28 doi: 10.1016/j.procbio.2006.05.018
CrossRef Google Scholar
|
[29]
|
Cregut M, Bedas M, Durand MJ, Thouand G. 2013. New insights into polyurethane biodegradation and realistic prospects for the development of a sustainable waste recycling process. Biotechnology Advances 31:1634−47 doi: 10.1016/j.biotechadv.2013.08.011
CrossRef Google Scholar
|
[30]
|
Tokiwa Y, Calabia BP, Ugwu CU, Aiba S. 2009. Biodegradability of plastics. International Journal of Molecular Sciences 10:3722−42 doi: 10.3390/ijms10093722
CrossRef Google Scholar
|
[31]
|
Wei R, Zimmermann W. 2017. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we. Microbial Biotechnology 10:1308−22 doi: 10.1111/1751-7915.12710
CrossRef Google Scholar
|
[32]
|
Fujisawa M, Hirai H, Nishida T. 2001. Degradation of polyethylene and nylon-66 by the laccase-mediator system. Journal of Polymers the Environment 9:103−8 doi: 10.1023/A:1020472426516
CrossRef Google Scholar
|
[33]
|
Suhas, Carrott PJM, Ribeiro Carrott MML. 2007. Lignin–from natural adsorbent to activated carbon: a review. Bioresource Technology 98:2301−12 doi: 10.1016/j.biortech.2006.08.008
CrossRef Google Scholar
|
[34]
|
Santo M, Weitsman R, Sivan A. 2013. The role of the copper-binding enzyme – laccase – in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. International Biodeterioration Biodegradation 84:204−10 doi: 10.1016/j.ibiod.2012.03.001
CrossRef Google Scholar
|
[35]
|
Sowmya H, Ramalingappa M, Thippeswamy B. 2014. Biodegradation of polyethylene by Bacillus cereus. Advances in Polymer Science and Technology 4:28−32
Google Scholar
|
[36]
|
Restrepo-Flórez JM, Bassi A, Thompson MR. 2014. Microbial degradation and deterioration of polyethylene – A review. International Biodeterioration & Biodegradation 88:83−90 doi: 10.1016/j.ibiod.2013.12.014
CrossRef Google Scholar
|
[37]
|
Seymour I. 1992. OPEC in the 1990s. Energy Policy 20:909−12 doi: 10.1016/0301-4215(92)90177-4
CrossRef Google Scholar
|
[38]
|
Crabbe JR, Campbell JR, Thompson L, Walz SL, Schultz WW. 1994. Biodegradation of a colloidal ester-based polyurethane by soil fungi. International Biodeterioration Biodegradation 33:103−13 doi: 10.1016/0964-8305(94)90030-2
CrossRef Google Scholar
|
[39]
|
Nakajima-Kambe T, Shigeno-Akutsu Y, Nomura N, Onuma F, Nakahara T. 1999. Microbial degradation of polyurethane, polyester polyurethanes and polyether polyurethanes. Applied Microbiology and Biotechnology 51:134−40 doi: 10.1007/s002530051373
CrossRef Google Scholar
|
[40]
|
Ii RCB, Norton WN, Howard GT. 1998. Adherence and growth of a Bacillus species on an insoluble polyester polyurethane. International Biodeterioration & Biodegradation 42:63−73 doi: 10.1016/S0964-8305(98)00048-1
CrossRef Google Scholar
|
[41]
|
Akutsu Y, Nakajima-Kambe T, Nomura N, Nakahara T. 1998. Purification and properties of a polyester polyurethane-degrading enzyme from Comamonas acidovorans TB-35. Applied and Environmental Microbiology 64:62−67 doi: 10.1128/AEM.64.1.62-67.1998
CrossRef Google Scholar
|
[42]
|
Howard GT, Blake RC. 1998. Growth of Pseudomonas fluorescens on a polyester–polyurethane and the purification and characterization of a polyurethanase–protease enzyme. International Biodeterioration & Biodegradation 42:213−20 doi: 10.1016/S0964-8305(98)00051-1
CrossRef Google Scholar
|
[43]
|
Allen AB, Hilliard NP, Howard GT. 1999. Purification and characterization of a solublepolyurethane degrading enzyme from Comamonasacidovorans. International Biodeterioration & Biodegradation 43:37−41 doi: 10.1016/S0964-8305(98)00066-3
CrossRef Google Scholar
|
[44]
|
Howard GT. 2002. Biodegradation of polyurethane: a review. International Biodeterioration Biodegradation 49:245−52 doi: 10.1016/S0964-8305(02)00051-3
CrossRef Google Scholar
|
[45]
|
Pathirana R. 1984. Studies on polyurethane deteriorating fungi. II. An examination of their enzyme activities. International Biodeterioration 20:163−68
Google Scholar
|
[46]
|
Webb HK, Arnott J, Crawford RJ, Ivanova EP. 2012. Plastic degradation and its environmental implications with special reference to poly (ethylene terephthalate). Polymers 5:1−18 doi: 10.3390/polym5010001
CrossRef Google Scholar
|
[47]
|
Ronkvist ÅM, Xie W, Lu W, Gross RA. 2009. Cutinase-catalyzed hydrolysis of poly (ethylene terephthalate). Macromolecules 42:5128−38 doi: 10.1021/ma9005318
CrossRef Google Scholar
|
[48]
|
Vertommen MAME, Nierstrasz VA, van der Veer M, Warmoeskerken MMCG. 2005. Enzymatic surface modification of poly(ethylene terephthalate). Journal of Biotechnology 120:376−86 doi: 10.1016/j.jbiotec.2005.06.015
CrossRef Google Scholar
|
[49]
|
Eberl A, Heumann S, Brückner T, Araujo R, Cavaco-Paulo A, et al. 2009. Enzymatic surface hydrolysis of poly(ethylene terephthalate) and bis(benzoyloxyethyl) terephthalate by lipase and cutinase in the presence of surface active molecules. Journal of Biotechnology 143:207−12 doi: 10.1016/j.jbiotec.2009.07.008
CrossRef Google Scholar
|
[50]
|
Liebminger S, Eberl A, Sousa F, Heumann S, Fischer-Colbrie G, et al. 2007. Hydrolysis of PET and bis-(benzoyloxyethyl) terephthalate with a new polyesterase from Penicillium citrinum. Biocatalysis Biotransformation 25:171−7 doi: 10.1080/10242420701379734
CrossRef Google Scholar
|
[51]
|
Araújo R, Silva C, O’Neill A, Micaelo N, Guebitz G, et al. 2007. Tailoring cutinase activity towards polyethylene terephthalate and polyamide 6,6 fibers. Journal of Biotechnology 128:849−57 doi: 10.1016/j.jbiotec.2006.12.028
CrossRef Google Scholar
|
[52]
|
Herrero Acero E, Ribitsch D, Dellacher A, Zitzenbacher S, Marold A, et al. 2013. Surface engineering of a cutinase from Thermobifida cellulosilytica for improved polyester hydrolysis. Biotechnology and Bioengineering 110:2581−90 doi: 10.1002/bit.24930
CrossRef Google Scholar
|
[53]
|
Haberman Y, Karns R, Dexheimer PJ, Schirmer M, Somekh J, et al. 2019. Ulcerative colitis mucosal transcriptomes reveal mitochondriopathy and personalized mechanisms underlying disease severity and treatment response. Nature Communications 10:38 doi: 10.1038/s41467-018-07841-3
CrossRef Google Scholar
|
[54]
|
Barth M, Wei R, Oeser T, Then J, Schmidt J, et al. 2015. Enzymatic hydrolysis of polyethylene terephthalate films in an ultrafiltration membrane reactor. Journal of Membrane Science 494:182−87 doi: 10.1016/j.memsci.2015.07.030
CrossRef Google Scholar
|
[55]
|
Panke S, Wubbolts MG. 2002. Enzyme technology and bioprocess engineering. Current Opinion in Biotechnology 13:111−16 doi: 10.1016/S0958-1669(02)00302-6
CrossRef Google Scholar
|
[56]
|
van Beilen JB, Li Z. 2002. Enzyme technology: an overview. Current Opinion in Biotechnology 13:338−44 doi: 10.1016/S0958-1669(02)00334-8
CrossRef Google Scholar
|
[57]
|
Hansen CA. 2001. The application of biotechnology to industrial sustainability.
|
[58]
|
Kirst HA. 2002. Introduction to the macrolide antibiotics. In Macrolide antibiotics, eds. Schönfeld W, Kirst HA. Switzerland: Birkhäuser, Basel, Springer. pp. 1−13 https://doi.org/10.1007/978-3-0348-8105-0_1
|
[59]
|
Gross RA, Kumar A, Kalra B. 2001. Polymer synthesis by in vitro enzyme catalysis. Chemical Reviews 101:2097−124 doi: 10.1021/cr0002590
CrossRef Google Scholar
|
[60]
|
Kobayashi S, Uyama H, Kimura S. 2001. Enzymatic polymerization. Chemical Reviews 101:3793−818 doi: 10.1021/cr990121l
CrossRef Google Scholar
|
[61]
|
Berkane C, Mezoul G, Lalot T, Brigodiot M, Maréchal E. 1997. Lipase-catalyzed polyester synthesis in organic medium. Study of ring−chain equilibrium. Macromolecules 30:7729−34 doi: 10.1021/ma970745y
CrossRef Google Scholar
|
[62]
|
Idris A, Bukhari A. 2012. Immobilized Candida antarctica lipase B: Hydration, stripping off and application in ring opening polyester synthesis. Biotechnology Advances 30:550−63 doi: 10.1016/j.biotechadv.2011.10.002
CrossRef Google Scholar
|
[63]
|
Gan Z, Yu D, Zhong Z, Liang Q, Jing X. 1999. Enzymatic degradation of poly(ε-caprolactone)/poly(DL-lactide) blends in phosphate buffer solution. Polymer 40:2859−62 doi: 10.1016/S0032-3861(98)00549-7
CrossRef Google Scholar
|
[64]
|
Pastorino L, Pioli F, Zilli M, Converti A, Nicolini C. 2004. Lipase-catalyzed degradation of poly(ε-caprolactone). Enzyme and Microbial Technology 35:321−26 doi: 10.1016/j.enzmictec.2004.05.005
CrossRef Google Scholar
|
[65]
|
Branco dos Santos F, de Vos WM, Teusink B. 2013. Towards metagenome-scale models for industrial applications — the case of Lactic Acid Bacteria. Current Opinion in Biotechnology 24:200−6 doi: 10.1016/j.copbio.2012.11.003
CrossRef Google Scholar
|
[66]
|
Hu X, Thumarat U, Zhang X, Tang M, Kawai F. 2010. Diversity of polyester-degrading bacteria in compost and molecular analysis of a thermoactive esterase from Thermobifida alba AHK119. Applied Microbiology Biotechnology 87:771−79 doi: 10.1007/s00253-010-2555-x
CrossRef Google Scholar
|
[67]
|
Suyama T, Shigematsu T, Takaichi S, Nodasaka Y, Fujikawa S, et al. 1999. Roseateles depolymerans gen. nov., sp. nov., a new bacteriochlorophyll a-containing obligate aerobe belonging to the β-subclass of the Proteobacteria. International Journal of Systematic and Evolutionary Microbiology 49:449−57 doi: 10.1099/00207713-49-2-449
CrossRef Google Scholar
|
[68]
|
Ribitsch D, Acero EH, Greimel K, Eiteljoerg I, Trotscha E, et al. 2012. Characterization of a new cutinase from Thermobifida alba for PET-surface hydrolysis. Biocatalysis and Biotransformation 30:2−9 doi: 10.3109/10242422.2012.644435
CrossRef Google Scholar
|
[69]
|
Shinozaki Y, Morita T, Cao X, Yoshida S, Koitabashi M, et al. 2013. Biodegradable plastic-degrading enzyme from Pseudozyma antarctica: cloning, sequencing, and characterization. Applied Microbiology Biotechnology Advances 97:2951−59 doi: 10.1007/s00253-012-4188-8
CrossRef Google Scholar
|
[70]
|
Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, et al. 2012. Engineering the third wave of biocatalysis. Nature 485:185−94 doi: 10.1038/nature11117
CrossRef Google Scholar
|
[71]
|
Farinas ET, Bulter T, Arnold FH. 2001. Directed enzyme evolution. Current Opinion in Biotechnology 12:545−51 doi: 10.1016/S0958-1669(01)00261-0
CrossRef Google Scholar
|
[72]
|
Jaeger KE, Eggert T, Eipper A, Reetz M. 2001. Directed evolution and the creation of enantioselective biocatalysts. Applied Microbiology and Biotechnology 55:519−30 doi: 10.1007/s002530100643
CrossRef Google Scholar
|
[73]
|
Motherwell WB, Bingham MJ, Six Y. 2001. Recent progress in the design and synthesis of artificial enzymes. Tetrahedron 22:4663−86 doi: 10.1016/S0040-4020(01)00288-5
CrossRef Google Scholar
|
[74]
|
Davids T, Schmidt M, Böttcher D, Bornscheuer UT. 2013. Strategies for the discovery and engineering of enzymes for biocatalysis. Current Opinion in Chemical Biology 17:215−20 doi: 10.1016/j.cbpa.2013.02.022
CrossRef Google Scholar
|
[75]
|
Fox RJ, Davis SC, Mundorff EC, Newman LM, Gavrilovic V, et al. 2007. Improving catalytic function by ProSAR-driven enzyme evolution. Nature Biotechnology 25:338−44 doi: 10.1038/nbt1286
CrossRef Google Scholar
|
[76]
|
Damborsky J, Brezovsky J. 2009. Computational tools for designing and engineering biocatalysts. Current Opinion in Chemical Biology 13:26−34 doi: 10.1016/j.cbpa.2009.02.021
CrossRef Google Scholar
|
[77]
|
Kries H, Blomberg R, Hilvert D. 2013. De novo enzymes by computational design. Current Opinion in Chemical Biology 17:221−28 doi: 10.1016/j.cbpa.2013.02.012
CrossRef Google Scholar
|
[78]
|
Jäckel C, Hilvert D. 2010. Biocatalysts by evolution. Current Opinion in Biotechnology 21:753−59 doi: 10.1016/j.copbio.2010.08.008
CrossRef Google Scholar
|
[79]
|
Shanklin J. 2008. Enzyme engineering. Advances in Plant Biochemistry and Molecular Biology 1:29−47 doi: 10.1016/S1755-0408(07)01002-8
CrossRef Google Scholar
|
[80]
|
Hood EE. 2002. From green plants to industrial enzymes. Enzyme and Microbial Technology 30:279−83 doi: 10.1016/S0141-0229(01)00502-6
CrossRef Google Scholar
|
[81]
|
Illanes A, Cauerhff A, Wilson L, Castro GR. 2012. Recent trends in biocatalysis engineering. Bioresource Technology 115:48−57 doi: 10.1016/j.biortech.2011.12.050
CrossRef Google Scholar
|
[82]
|
Torres S, Pandey A, Castro GR. 2011. Organic solvent adaptation of Gram positive bacteria: applications and biotechnological potentials. Biotechnology Advances 29:442−52 doi: 10.1016/j.biotechadv.2011.04.002
CrossRef Google Scholar
|
[83]
|
Gaspers PB, Gast AP, Robertson CR. 1995. Enzymes on immobilized substrate surfaces: reaction. Journal of Colloid and Interface Science 172:518−29 doi: 10.1006/jcis.1995.1283
CrossRef Google Scholar
|
[84]
|
Judd S. 2008. The status of membrane bioreactor technology. Trends in Biotechnology 26:109−16 doi: 10.1016/j.tibtech.2007.11.005
CrossRef Google Scholar
|
[85]
|
Carstensen F, Apel A, Wessling M. 2012. In situ product recovery: Submerged membranes vs. external loop membranes. Journal of Membrane Science 394−395:1−36 doi: 10.1016/j.memsci.2011.11.029
CrossRef Google Scholar
|
[86]
|
Ferreira AM, Passos H, Okafuji A, Tavares APM, Ohno H, et al. 2018. An integrated process for enzymatic catalysis allowing product recovery and enzyme reuse by applying thermoreversible aqueous biphasic systems. Green Chemistry 20:1218−23 doi: 10.1039/C7GC03880A
CrossRef Google Scholar
|