[1]

Arnao MB, Hernández-Ruiz J. 2019. Melatonin: A new plant hormone and/or a plant master regulator. Trends in Plant Science 24:38−48

doi: 10.1016/j.tplants.2018.10.010
[2]

Kanwar MK, Yu J, Zhou J. 2018. Phytomelatonin: Recent advances and future prospects. Journal of Pineal Research 65:e12526

doi: 10.1111/jpi.12526
[3]

Wang Q, An B, Shi H, Luo H, He C. 2017. High Concentration of melatonin regulates leaf development by suppressing cell proliferation and endoreduplication in Arabidopsis. International Journal of Molecular Sciences 18:991

doi: 10.3390/ijms18050991
[4]

Pelagio-Flores R, Muñoz-Parra E, Ortiz-Castro R, López-Bucio J. 2012. Melatonin regulates Arabidopsis root system architecture likely acting independently of auxin signaling. Journal of Pineal Research 53:279−88

doi: 10.1111/j.1600-079X.2012.00996.x
[5]

Xiong F, Zhuo F, Reiter RJ, Wang L, Wei Z, et al. 2019. Hypocotyl elongation inhibition of melatonin is involved in repressing brassinosteroid biosynthesis in Arabidopsis. Frontiers in Plant Science 10:1082

doi: 10.3389/fpls.2019.01082
[6]

Lee HY, Back K. 2016. Mitogen-activated protein kinase pathways are required for melatonin-mediated defense responses in plants. Journal of Pineal Research 60:327−35

doi: 10.1111/jpi.12314
[7]

Wei J, Li D, Zhang J, Shan C, Rengel Z, et al. 2018. Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana. Journal of Pineal Research 65:e12500

doi: 10.1111/jpi.12500
[8]

Li T, Jiang Z, Zhang L, Tan D, Wei Y, et al. 2016. Apple (Malus domestica) MdERF2 negatively affects ethylene biosynthesis during fruit ripening by suppressing MdACS1 transcription. The Plant Journal 88:735−48

doi: 10.1111/tpj.13289
[9]

Liu F, Zhang H, Ding L, Soppe WJJ, Xiang Y. 2020. REVERSAL OF RDO51, a homolog of rice seed dormancy 4, interacts with bHLH57 and controls ABA biosynthesis and seed dormancy in Arabidopsis. The Plant cell 32:1933−48

doi: 10.1105/tpc.20.00026
[10]

Wang X, Zhang H, Xie Q, Liu Y, Lv H, et al. 2020. SlSNAT Interacts with HSP40, a molecular chaperone, to regulate melatonin biosynthesis and promote thermotolerance in tomato. Plant and Cell Physiology 61:909−21

doi: 10.1093/pcp/pcaa018
[11]

Wei Y, Liu G, Chang Y, Lin D, Reiter RJ, et al. 2018. Melatonin biosynthesis enzymes recruit WRKY transcription factors to regulate melatonin accumulation and transcriptional activity on W-box in cassava. Journal of Pineal Research 2018,65:e12487

doi: 10.1111/jpi.12487
[12]

Lazare S, Bechar D, Fernie AR, Brotman Y, Zacci M. 2019. The proof is in the bulb: glycerol influences key stages of lily development. The Plant Journal 97:321−40

doi: 10.1111/tpj.14122
[13]

Sun L, Yan R, Yang Y, Sun H. 2022. Melatonin promotes scale primordium initiation and basal root regeneration and slows starch degradation in Lilium 'Siberia'. Scientia Horticulturae294

doi: 10.1016/j.scienta.2021.110798
[14]

Wang P, Sun X, Xie Y, Li M, Chen W, et al. 2015. Melatonin regulates proteomic changes during leaf senescence in malus hupehensis. Journal of Pineal Research 57:291−307

doi: 10.1111/jpi.12169
[15]

Kobylińska A, Borek S, Posmyk MM. 2018. Melatonin redirects carbohydrates metabolism during sugar starvation in plant cells. Journal of Pineal Research 64:e12466

doi: 10.1111/jpi.12466
[16]

Weber H, Bernhardt A, Dieterle M, Hano P, Mutlu A, et al. 2005. Arabidopsis AtCUL3a and AtCUL3b form complexes with members of the BTB/POZ-MATH protein family. Plant Physiology 137:83−93

doi: 10.1104/pp.104.052654
[17]

Lechner E, Leonhardt N, Eisler H, Parmentier Y, Alioua M, et al. 2011. MATH/BTB CRL3 receptors target the homeodomain-leucine zipper ATHB6 to modulate abscisic acid signaling. Developmental Cell 21:1116−28

doi: 10.1016/j.devcel.2011.10.018
[18]

Julian J, Coego A, Lozano-Juste J, Lechner E, Wu Q, et al. 2019. The MATH-BTB BPM3 and BPM5 subunits of Cullin3-RING E3 ubiquitin ligases target PP2CA and other clade A PP2Cs for degradation. PNAS 116(31):15725−34

doi: 10.1073/pnas.1908677116
[19]

Matías-Hernández L, Aguilar-Jaramillo AE, Marín-González E, Suárez-López P, Pelaz S. 2014. RAV genes: regulation of floral induction and beyond. Annals of Botany 114:1459−70

doi: 10.1093/aob/mcu069
[20]

Zhang K, Zhao L, Yang X, Li M, Sun J, et al. 2019. GmRAV1 regulates regeneration of roots and adventitious buds by the cytokinin signaling pathway in Arabidopsis and soybean. Physiologia Plantarum 165:814−29

doi: 10.1111/ppl.12788
[21]

Shin HY, Nam KH. 2018. RAV1 negatively regulates seed development by directly repressing MINI3 and IKU2 in Arabidopsis. Molecules and Cells 41:1072−80

doi: 10.14348/molcells.2018.0259
[22]

Feng C, Chen Y, Wang C, Kong Y, Wu W, et al. 2014. Arabidopsis RAV1 transcription factor, phosphorylated by SnRK2 kinases, regulates the expression of ABI3, ABI4, and ABI5 during seed germination and early seedling development. The Plant Journal 80:654−68

doi: 10.1111/tpj.12670
[23]

Weber H, Hellmann H. 2009. Arabidopsis thaliana BTB⁄ POZ-MATH proteins interact with members of the ERF⁄AP2 transcription factor family. FEBS Journal 276:6624−35

doi: 10.1111/j.1742-4658.2009.07373.x
[24]

Luo Y, Liu X, Li W. 2021. Exogenously-supplied trehalose inhibits the growth of wheat seedlings under high temperature by affecting plant hormone levels and cell cycle processes. Plant Signaling & Behavior 16:1907043

doi: 10.1080/15592324.2021.1907043
[25]

Kolbe A, Tiessen A, Schluepmann H, Paul M, Ulrich S, et al. 2005. Trehalose 6-phosphate regulates starch synthesis via posttranslational redox activation of ADP-glucose pyrophosphorylase. PNAS 102:11118−23

doi: 10.1073/pnas.0503410102
[26]

Chen L, Lee JH, Weber H, Tohge T, Witt S, et al. 2013. Arabidopsis BPM proteins function as substrate adaptors to a CULLIN3-based E3 ligase to affect fatty acid metabolism in plants. The Plant Cell 25:2253−64

doi: 10.1105/tpc.112.107292
[27]

Du F, Fan J, Wang T, Wu Y, Grierson D, et al. 2017. Identification of differentially expressed genes in flower, leaf and bulb scale of Lilium oriental hybrid 'Sorbonne' and putative control network for scent genes. BMC Genomics 18:899

doi: 10.1186/s12864-017-4303-4
[28]

Yang P, Xu L, Xu H, Tang Y, He G, et al. 2017. Histological and transcriptomic analysis during bulbil formation in Lilium lancifolium. Frontiers in Plant Science 8:1508

doi: 10.3389/fpls.2017.01508
[29]

Strzalka W, Ziemienowicz A. 2011. Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation. Annals of Botany 107:1127−40

doi: 10.1093/aob/mcq243
[30]

Scofield S, Jones A, Murray JA. 2014. The plant cell cycle in context. Journal of Experimental Botany 65:2557−62

doi: 10.1093/jxb/eru188
[31]

Jun SE, Okushima Y, Nam J, Umeda M, Kim GT. 2013. Kip-related protein 3 is required for control of endoreduplication in the shoot apical meristem and leaves of Arabidopsis. Molecules and Cells 35:47−53

doi: 10.1007/s10059-013-2270-4
[32]

Sarvepalli K, Nath U. 2018. CIN-TCP transcription factors: Transiting cell proliferation in plants. IUBMB Life 70:718−31

doi: 10.1002/iub.1874
[33]

Paul M. 2007. Trehalose 6-phosphate. Current Opinion in Plant Biology 10:303−9

doi: 10.1016/j.pbi.2007.04.001
[34]

Li X, Wang C, Cheng J, Zhang J, da Silva JAT, et al. 2014. Transcriptome analysis of carbohydrate metabolism during bulblet formation and development in Lilium davidii var. unicolor. BMC Plant Biology 14:358

doi: 10.1186/s12870-014-0358-4
[35]

Lakehal A, Bellini C. 2018. Control of adventitious root formation: insights into synergistic and antagonistic hormonal interactions. Physiologia Plantarum 165:90−100

doi: 10.1111/ppl.12823
[36]

Causier B, Ashworth M, Guo W, Davies B. 2012. The TOPLESS interactome: A framework for gene repression in Arabidopsis. Plant Physiology 158:423−38

doi: 10.1104/pp.111.186999
[37]

Chen L, Bernhardt A, Lee J, Hellmann H. 2015. Identification of Arabidopsis MYB56 as a novel substrate for CRL3BPM E3 ligases. Molecular Plant 8:242−50

doi: 10.1016/j.molp.2014.10.004
[38]

Chico JM, Lechner E, Fernandez-Barbero G, Canibano E, García-Casado G, et al. 2020. CUL3BPM E3 ubiquitin ligases regulate MYC2, MYC3, and MYC4 stability and JA responses. PNAS 117:6205−15

doi: 10.1073/pnas.1912199117
[39]

Abbas F, Ke Y, Zhou Y, Waseem M, Fan Y, et al. 2020. Cloning, functional characterization and expression analysis of LoTPS5 from Lilium 'Siberia'. Gene 756:144921

doi: 10.1016/j.gene.2020.144921
[40]

Zhang J, Xue B, Gai M, Song S, Jia N, et al. 2017. Small RNA and transcriptome sequencing reveal a potential miRNA-mediated interaction network that functions during somatic embryogenesis in Lilium pumilum DC. Frontiers in Plant Science 8:566

doi: 10.3389/fpls.2017.00566