[1]

Cao X, Jiao Y. 2020. Control of cell fate during axillary meristem initiation. Cellular and Molecular Life Sciences 77:2343−54

doi: 10.1007/s00018-019-03407-8
[2]

Greb T, Clarenz O, Schafer E, Muller D, Herrero R, et al. 2003. Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Genes & Development 17:1175−87

doi: 10.1101/gad.260703
[3]

Schumacher K, Schmitt T, Rossberg M, Schmitz G, Theres K. 1999. The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. PNAS 96:290−5

doi: 10.1073/pnas.96.1.290
[4]

Li X, Qian Q, Fu Z, Wang Y, Xiong G, et al. 2003. Control of tillering in rice. Nature 422:618−21

doi: 10.1038/nature01518
[5]

Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi-Tanaka M, et al. 2003. The OsTB1 gene negatively regulates lateral branching in rice. The Plant Journal 33:513−20

doi: 10.1046/j.1365-313X.2003.01648.x
[6]

Aguilar-Martínez JA, Poza-Carrión C, Cubas P. 2007. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. The Plant Cell 19:458−72

doi: 10.1105/tpc.106.048934
[7]

Cubas P, Lauter N, Doebley J, Coen E. 1999. The TCP domain: a motif found in proteins regulating plant growth and development. The Plant Journal 18:215−22

doi: 10.1046/j.1365-313X.1999.00444.x
[8]

Doebley J, Stec A, Hubbard L. 1997. The evolution of apical dominance in maize. Nature 386:485−8

doi: 10.1038/386485a0
[9]

Kebrom TH, Burson BL, Finlayson SA. 2006. Phytochrome B represses Teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals. Plant Physiology 140:1109−17

doi: 10.1104/pp.105.074856
[10]

Martín-Trillo M, Grandío EG, Serra F, Marcel F, Rodríguez-Buey ML, et al. 2011. Role of tomato BRANCHED1-like genes in the control of shoot branching. The Plant Journal 67:701−14

doi: 10.1111/j.1365-313X.2011.04629.x
[11]

Nicolas M, Rodríguez-Buey ML, Franco-Zorrilla JM, Cubas P. 2015. A recently evolved alternative splice site in the BRANCHED1a gene controls potato plant architecture. Current Biology 25:1799−809

doi: 10.1016/j.cub.2015.05.053
[12]

Shen J, Zhang Y, Ge D, Wang Z, Song W, et al. 2019. CsBRC1 inhibits axillary bud outgrowth by directly repressing the auxin efflux carrier CsPIN3 in cucumber. PNAS 116:17105−14

doi: 10.1073/pnas.1907968116
[13]

Cao X, Cui H, Yao Y, Xiong A, Hou X, Li Y. 2017. Effects of endogenous hormones on variation of shoot branching in a variety of non-heading Chinese cabbage and related gene expression. Journal of Plant Biology 60:343−51

doi: 10.1007/s12374-016-0124-2
[14]

Martín-Trillo M, Cubas P. 2010. TCP genes: a family snapshot ten years later. Trends in Plant Science 15:31−39

doi: 10.1016/j.tplants.2009.11.003
[15]

Breathnach R, Chambon P. 1981. Organization and expression of eucaryotic split genes coding for proteins. Annual Review of Biochemistry 50:349−83

doi: 10.1146/annurev.bi.50.070181.002025
[16]

González-Grandío E, Poza-Carrión C, Sorzano COS, Cubas P. 2013. BRANCHED1 promotes axillary bud dormancy in response to shade in Arabidopsis. The Plant Cell 25:834−50

doi: 10.1105/tpc.112.108480
[17]

Wang F, Han T, Song Q, Ye W, Song X, et al. 2020. The rice circadian clock regulates tiller growth and panicle development through strigolactone signaling and sugar sensing. The Plant Cell 32:3124−38

doi: 10.1105/tpc.20.00289
[18]

Chaudhury A, Dalal AD, Sheoran NT. 2019. Isolation, cloning and expression of CCA1 gene in transgenic progeny plants of Japonica rice exhibiting altered morphological traits. Plos One 14:e0220140

doi: 10.1371/journal.pone.0220140
[19]

Kamioka M, Takao S, Suzuki T, Taki K, Higashiyama T, et al. 2016. Direct repression of evening genes by CIRCADIAN CLOCK-ASSOCIATED1 in the Arabidopsis circadian clock. The Plant Cell 28:696−711

doi: 10.1105/tpc.15.00737
[20]

Nagel DH, Doherty CJ, Pruneda-Paz JL, Schmitz RJ, Ecker JR, et al. 2015. Genome-wide identification of CCA1 targets uncovers an expanded clock network in Arabidopsis. PNAS 112:E4802−E4810

doi: 10.1073/pnas.1513609112
[21]

Graveley BR. 2001. Alternative splicing: increasing diversity in the proteomic world. Trends in Genetics 17:100−7

doi: 10.1016/S0168-9525(00)02176-4
[22]

Braun N, de Saint Germain A, Pillot JP, Boutet-Mercey S, Dalmais M, et al. 2012. The pea TCP transcription factor PsBRC1 acts downstream of Strigolactones to control shoot branching. Plant Physiology 158:225−38

doi: 10.1104/pp.111.182725
[23]

Wang Y, Sun S, Zhu W, Jia K, Yang H, Wang X. 2013. Strigolactone/MAX2-induced degradation of brassinosteroid transcriptional effector BES1 regulates shoot branching. Developmental Cell 27:681−8

doi: 10.1016/j.devcel.2013.11.010
[24]

Seale M, Bennett T, Leyser O. 2017. BRC1 expression regulates bud activation potential but is not necessary or sufficient for bud growth inhibition in Arabidopsis. Development 144:1661−73

doi: 10.1242/dev.145649
[25]

Barbier FF, Dun EA, Kerr SC, Chabikwa TG, Beveridge CA. 2019. An update on the signals controlling shoot branching. Trends in Plant Science 24:220−36

doi: 10.1016/j.tplants.2018.12.001
[26]

Kosugi S, Ohashi Y. 2002. DNA binding and dimerization specificity and potential targets for the TCP protein family. The Plant Journal 30:337−48

doi: 10.1046/j.1365-313X.2002.01294.x
[27]

Aggarwal P, Das Gupta M, Joseph AP, Chatterjee N, Srinivasan N, et al. 2010. Identification of specific DNA binding residues in the TCP family of transcription factors in Arabidopsis. The Plant Cell 22:1174−89

doi: 10.1105/tpc.109.066647
[28]

González-Grandío E, Cubas P. 2016. TCP transcription factors: Evolution, structure, and biochemical function. In Plant Transcription Factors, ed. González DH. Boston: Academic Press. pp. 139−51 https://doi.org/10.1016/B978-0-12-800854-6.00009-9

[29]

Li Y, Liu G, Ma L, Liu T, Zhang C, et al. 2020. A chromosome-level reference genome of non-heading Chinese cabbage [Brassica campestris (syn. Brassica rapa) ssp. chinensis]. Horticulture Research 7:212

doi: 10.1038/s41438-020-00449-z
[30]

Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, et al. 2013. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6:4

doi: 10.1186/1939-8433-6-4
[31]

Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, et al. 2012. The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Research 40:D1202−D1210

doi: 10.1093/nar/gkr1090
[32]

Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33:1870−74

doi: 10.1093/molbev/msw054
[33]

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32:1792−97

doi: 10.1093/nar/gkh340
[34]

Saitou N, Nei M. 1987. The neighbor−joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4:406−25

doi: 10.1093/oxfordjournals.molbev.a040454
[35]

He Z, Zhang H, Gao S, Lercher MJ, Chen W, et al. 2016. Evolview v2: an online visualization and management tool for customized and annotated phylogenetic trees. Nucleic Acids Research 44:W236−W241

doi: 10.1093/nar/gkw370
[36]

Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16:735−43

doi: 10.1046/j.1365-313x.1998.00343.x
[37]

Yu J, Yang X, Wang Q, Gao L, Yang Y, et al. 2018. Efficient virus-induced gene silencing in Brassica rapa using a turnip yellow mosaic virus vector. Biologia Plantarum 62:826−34

doi: 10.1007/s10535-018-0803-6
[38]

Pfaffl M. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29:e45

doi: 10.1093/nar/29.9.e45