[1] |
Scott RJ, Spielman M, Dickinson HG. 2004. Stamen structure and function. The Plant Cell 16:S46−S60 doi: 10.1105/tpc.017012 |
[2] |
Goldberg RB, Beals TP, Sanders PM. 1993. Anther development: basic principles and practical applications. The Plant Cell 5:1217−29 doi: 10.1105/tpc.5.10.1217 |
[3] |
Sun L, Xiang X, Yang Z, Yu P, Wen X, et al. 2018. OsGPAT3 plays a critical role in anther wall programmed cell death and pollen development in rice. International Journal of Molecular Sciences 10:4017 doi: 10.3390/ijms19124017 |
[4] |
Yi J, Moon S, Lee YS, Zhu L, Liang W, et al. 2016. Defective Tapetum Cell Death 1 (DTC1) Regulates ROS Levels by Binding to Metallothionein during Tapetum Degeneration. Plant Physiology 170:1611−23 doi: 10.1104/pp.15.01561 |
[5] |
Chen L, Liu YG. 2014. Male sterility and fertility restoration in crops. Annual review of plant biology 65:579−606 doi: 10.1146/annurev-arplant-050213-040119 |
[6] |
Wilson ZA, Yang C. 2004. Plant gametogenesis: conservation and contrasts in development. Reproduction (Cambridge, England) 128:483−92 doi: 10.1530/rep.1.00306 |
[7] |
Brett CT, Waldron KW. 1990. Physiology and Biochemistry of Plant Cell Walls. Topics in Plant Physiology. eds. Black M, Chapman J. London: Unwin Hyman. 194 pp. |
[8] |
Carpita NC, Gibeaut DM. 1993. Structural models of primary cell walls in flowering plants consistency of molecular structure with the physical properties of the walls during growth. The Plant Journal 3:1−30 doi: 10.1111/j.1365-313X.1993.tb00007.x |
[9] |
Matsuo Y, Arimura S, Tsutsumi N. 2013. Distribution of cellulosic wall in the anthers of Arabidopsis during microsporogenesis. Plant Cell Reports 32:1743−50 doi: 10.1007/s00299-013-1487-1 |
[10] |
Shi Q, Lou Y, Shen S, Wang S, Zhou L, et al. 2021. A cellular mechanism underlying the restoration of thermo/photoperiod-sensitive genic male sterility. Molecular Plant 14:2104−14 doi: 10.1016/j.molp.2021.08.019 |
[11] |
Heslop-Harrison J. 1963. An ultrastructural study of pollen wall ontogeny in Silene pendula. Grana Palynologica 4:7−24 doi: 10.1080/00173136309437854 |
[12] |
Piffanelli P, Ross JHE, Murphy DJ. 1998. Biogenesis and function of the lipidic structures of pollen grains. Sexual Plant Reproduction 11:65−80 doi: 10.1007/s004970050122 |
[13] |
Zhou Q, Zhu J, Cui Y, Yang Z. 2015. Ultrastructure analysis reveals sporopollenin deposition and nexine formation at early stage of pollen wall development in Arabidopsis. Science Bulletin 60:273−76 doi: 10.1007/s11434-014-0723-6 |
[14] |
Huang L, Cao J, Zhang A, Ye Y, Zhang Y, et al. 2009. The polygalacturonase gene BcMF2 from Brassica campestris is associated with intine development. Journal of Experimental Botany 60:301−13 doi: 10.1093/jxb/ern295 |
[15] |
Li J, Yu M, Geng L, Zhao J. 2010. The fasciclin-like arabinogalactan protein gene, FLA3, is involved in microspore development of Arabidopsis. The Plant Journal 64:482−97 doi: 10.1111/j.1365-313X.2010.04344.x |
[16] |
Xu T, Zhang C, Zhou Q, Yang Z. 2016. Pollen wall pattern in Arabidopsis. Science Bulletin 61:832−37 doi: 10.1007/s11434-016-1062-6 |
[17] |
Ariizumi T, Toriyama K. 2011. Genetic regulation of sporopollenin synthesis and pollen exine development. Annual Review of Plant Biology 62:437−60 doi: 10.1146/annurev-arplant-042809-112312 |
[18] |
Jiang J, Zhang Z, Cao J. 2013. Pollen wall development: the associated enzymes and metabolic pathways. Plant Biology 15:249−63 doi: 10.1111/j.1438-8677.2012.00706.x |
[19] |
Quilichini TD, Grienenberger E, Douglas CJ. 2015. The biosynthesis, composition and assembly of the outer pollen wall: a tough case to crack. Phytochemistry 113:170−82 doi: 10.1016/j.phytochem.2014.05.002 |
[20] |
Shi J, Cui M, Yang L, Kim YJ, Zhang D. 2015. Genetic and biochemical mechanisms of pollen wall development. Trends in Plant Science 20:741−53 doi: 10.1016/j.tplants.2015.07.010 |
[21] |
Grienenberger E, Quilichini TD. 2021. The toughest material in the plant kingdom: an update on sporopollenin. Frontiers in Plant Science 12:703864 doi: 10.3389/fpls.2021.703864 |
[22] |
Pacini E, Franchi GG, Hesse M. 1985. The tapetum: its form, function, and possible phylogeny in Embryophyta. Plant Systematics and Evolution 149:155−85 doi: 10.1007/BF00983304 |
[23] |
Mariani C, de Beuckeleer M, Truettner J, Leemans J, Goldberg RB. 1990. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 347:737−41 doi: 10.1038/347737a0 |
[24] |
Phan HA, Iacuone S, Li SF, Parish RW. 2011. The MYB80 transcription factor is required for pollen development and the regulation of tapetal programmed cell death in Arabidopsis thaliana. The Plant cell 23:2209−24 doi: 10.1105/tpc.110.082651 |
[25] |
Zhang D, Liu D, Lv X, Wang Y, Xun Z, et al. 2014. The cysteine protease CEP1, a key executor involved in tapetal programmed cell death, regulates pollen development in Arabidopsis. The Plant Cell 26:2939−61 doi: 10.1105/tpc.114.127282 |
[26] |
Xie H, Wan Z, Li S, Zhang Y. 2014. Spatiotemporal production of reactive oxygen species by NADPH oxidase is critical for tapetal programmed cell death and pollen development in Arabidopsis. The Plant Cell 26:2007−23 doi: 10.1105/tpc.114.125427 |
[27] |
Cui Y, Zhao Q, Xie H, Wong W, Wang X, et al. 2017. MONENSIN SENSITIVITY1 (MON1)/CALCIUM CAFFEINE ZINC SENSITIVITY1 (CCZ1)-mediated Rab7 activation regulates tapetal programmed cell death and pollen development. Plant Physiology 173:206−18 doi: 10.1104/pp.16.00988 |
[28] |
Cheng Z, Guo X, Zhang J, Liu Y, Wang B, et al. 2020. βVPE is involved in tapetal degradation and pollen development by activating proprotease maturation in Arabidopsis thaliana. Journal of Experimental Botany 71:1943−55 doi: 10.1093/jxb/erz560 |
[29] |
Sorensen AM, Kröber S, Unte US, Huijser P, Dekker K, et al. 2003. The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. The Plant Journal 33:413−23 doi: 10.1046/j.1365-313X.2003.01644.x |
[30] |
Zhang W, Sun Y, Timofejeva L, Chen C, Grossniklaus U, et al. 2006. Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1) encoding a putative bHLH transcription factor. Development 133:3085−95 doi: 10.1242/dev.02463 |
[31] |
Xu J, Yang C, Yuan Z, Zhang D, Gondwe M, et al. 2010. The ABORTED MICROSPORES regulatory network is required for postmeiotic male reproductive development in Arabidopsis thaliana. The Plant cell 22:91−107 doi: 10.1105/tpc.109.071803 |
[32] |
Zhu J, Chen H, Li H, Gao J, Jiang H, et al. 2008. Defective in tapetal development and function 1 is essential for anther development and tapetal function for microspore maturation in Arabidopsis. The Plant journal:for cell and molecular biology 55:266−77 doi: 10.1111/j.1365-313X.2008.03500.x |
[33] |
Wilson ZA, Morroll SM, Dawson J, Swarup R, Tighe PJ. 2001. The Arabidopsis MALE STERILITY1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. The Plant Journal 28:27−39 doi: 10.1046/j.1365-313X.2001.01125.x |
[34] |
Ito T, Shinozaki K. 2002. The MALE STERILITY1 gene of Arabidopsis, encoding a nuclear protein with a PHD-finger motif, is expressed in tapetal cells and is required for pollen maturation. Plant & Cell Physiology 43:1285−92 doi: 10.1093/pcp/pcf154 |
[35] |
Zhang Z, Zhu J, Gao J, Wang C, Li H, et al. 2007. Transcription factor AtMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in Arabidopsis. The Plant Journal 52:528−38 doi: 10.1111/j.1365-313X.2007.03254.x |
[36] |
Zhu J, Zhang G, Chang Y, Li X, Yang J, et al. 2010. AtMYB103 is a crucial regulator of several pathways affecting Arabidopsis anther development. Science China. Life Sciences 53:1112−22 doi: 10.1007/s11427-010-4060-y |
[37] |
Vizcay-Barrena G, Wilson ZA. 2006. Altered tapetal PCD and pollen wall development in the Arabidopsis ms1 mutant. Journal of Experimental Botany 57:2709−17 doi: 10.1093/jxb/erl032 |
[38] |
Zhu J, Lou Y, Xu X, Yang Z. 2011. A genetic pathway for tapetum development and function inArabidopsis. Journal of Integrative Plant Biology 53:892−900 doi: 10.1111/j.1744-7909.2011.01078.x |
[39] |
Millar AA, Gubler F. 2005. The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. The Plant Cell 17:705−21 doi: 10.1105/tpc.104.027920 |
[40] |
Zhu E, You C, Wang S, Cui J, Niu B, et al. 2015. The DYT1-interacting proteins bHLH010, bHLH089 and bHLH091 are redundantly required for Arabidopsis anther development and transcriptome. The Plant Journal 83:976−90 doi: 10.1111/tpj.12942 |
[41] |
Cui J, You C, Zhu E, Huang Q, Ma H, et al. 2016. Feedback regulation of DYT1 by Interactions with downstream bHLH factors promotes DYT1 nuclear localization and anther development. The Plant Cell 28:1078−93 doi: 10.1105/tpc.15.00986 |
[42] |
Gu J, Zhu J, Yu Y, Teng X, Lou Y, et al. 2014. DYT1 directly regulates the expression of TDF1 for tapetum development and pollen wall formation in Arabidopsis. The Plant Journal 80:1005−13 doi: 10.1111/tpj.12694 |
[43] |
Lou Y, Zhou H, Han Y, Zeng Q, Zhu J, et al. 2018. Positive regulation of AMS by TDF1 and the formation of a TDF1-AMS complex are required for anther development in Arabidopsis thaliana. The New Phytologist 217:378−91 doi: 10.1111/nph.14790 |
[44] |
Lou Y, Xu X, Zhu J, Gu J, Blackmore S, et al. 2014. The tapetal AHL family protein TEK determines nexine formation in the pollen wall. Nature Communications 5:3855 doi: 10.1038/ncomms4855 |
[45] |
Ferguson AC, Pearce S, Band LR, Yang C, Ferjentsikova I, et al. 2017. Biphasic regulation of the transcription factor ABORTED MICROSPORES (AMS) is essential for tapetum and pollen development in Arabidopsis. The New Phytologist 213:778−90 doi: 10.1111/nph.14200 |
[46] |
Lu J, Xiong S, Yin W, Teng X, Lou Y, et al. 2020. MS1, a direct target of MS188, regulates the expression of key sporophytic pollen coat protein genes in Arabidopsis. Journal of Experimental Botany 71:4877−89 doi: 10.1093/jxb/eraa219 |
[47] |
Xiong S, Lu J, Lou Y, Teng X, Gu J, et al. 2016. The transcription factors MS188 and AMS form a complex to activate the expression of CYP703A2 for sporopollenin biosynthesis in Arabidopsis thaliana. The Plant Journal 88:936−46 doi: 10.1111/tpj.13284 |
[48] |
Wang K, Guo Z, Zhou W, Zhang C, Zhang Z, et al. 2018. The regulation of sporopollenin biosynthesis genes for rapid pollen wall formation. Plant Physiology 178:283−94 doi: 10.1104/pp.18.00219 |
[49] |
Jung KH, Han MJ, Lee YS, Kim YW, Hwang I, et al. 2005. Rice Undeveloped Tapetum1 is a major regulator of early tapetum development. The Plant Cell 17:2705−22 doi: 10.1105/tpc.105.034090 |
[50] |
Li N, Zhang D, Liu H, Yin C, Li X, et al. 2006. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. The Plant Cell 18:2999−3014 doi: 10.1105/tpc.106.044107 |
[51] |
Zhang S, Fang Z, Zhu J, Gao J, Yang Z. 2010. OsMYB103 is required for rice anther development by regulating tapetum development and exine formation. Chinese Science Bulletin 55:3288−97 doi: 10.1007/s11434-010-4087-2 |
[52] |
Li H, Yuan Z, Vizcay-Barrena G, Yang C, Liang W, et al. 2011. PERSISTENT TAPETAL CELL1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in rice. Plant Physiology 156:615−30 doi: 10.1104/pp.111.175760 |
[53] |
Cai C, Zhu J, Lou Y, Guo Z, Xiong S, et al. 2015. The functional analysis of OsTDF1 reveals a conserved genetic pathway for tapetal development between rice and Arabidopsis. Science Bulletin 60:1073−82 doi: 10.1007/s11434-015-0810-3 |
[54] |
Zhang D, Liang W, Yuan Z, Li N, Shi J, et al. 2008. Tapetum degeneration retardation is critical for aliphatic metabolism and gene regulation during rice pollen development. Molecular plant 1:599−610 doi: 10.1093/mp/ssn028 |
[55] |
Pan X, Yan W, Chang Z, Xu Y, Luo M, et al. 2020. OsMYB80 regulates anther development and pollen fertility by targeting multiple biological pathways. Plant and Cell Physiology 61:988−1004 doi: 10.1093/pcp/pcaa025 |
[56] |
Han Y, Zhou S, Fan J, Zhou L, Shi Q, et al. 2021. OsMS188 is a key regulator of tapetum development and sporopollenin synthesis in rice. Rice 14:4 doi: 10.1186/s12284-020-00451-y |
[57] |
Jiang Y, An X, Li Z, Yan T, Zhu T, et al. 2021. CRISPR/Cas9-based discovery of maize transcription factors regulating male sterility and their functional conservation in plants. Plant Biotechnology Journal 19:1769−84 doi: 10.1111/pbi.13590 |
[58] |
An X, Ma B, Duan M, Dong Z, Liu R, et al. 2020. Molecular regulation of ZmMs7 required for maize male fertility and development of a dominant male-sterility system in multiple species. PNAS 117:23499−509 doi: 10.1073/pnas.2010255117 |
[59] |
Zhang D, Wu S, An X, Xie K, Dong Z, et al. 2018. Construction of a multicontrol sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. Plant Biotechnology Journal 16:459−71 doi: 10.1111/pbi.12786 |
[60] |
Nan G, Zhai J, Arikit S, Morrow D, Fernandes J, et al. 2017. MS23, a master basic helix-loop-helix factor, regulates the specification and development of the tapetum in maize. Development 144:163−72 doi: 10.1242/dev.140673 |
[61] |
Albertsen MC, Fox T, Leonard A, Li B, Loveland B, et al. 2016. Patent No. US 2016/0024520 |
[62] |
Moon J, Skibbe D, Timofejeva L, Wang CJR, Kelliher T, et al. 2013. Regulation of cell divisions and differentiation by MALE STERILITY32 is required for anther development in maize. The Plant Journal 76:592−602 doi: 10.1111/tpj.12318 |
[63] |
Niu N, Liang W, Yang X, Jin W, Wilson ZA, et al. 2013. EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nature Communications 4:1445 doi: 10.1038/ncomms2396 |
[64] |
Ji C, Li H, Chen L, Xie M, Wang F, et al. 2013. A novel rice bHLH transcription factor, DTD, acts coordinately with TDR in controlling tapetum function and pollen development. Molecular Plant 6:1715−8 doi: 10.1093/mp/sst046 |
[65] |
Fu Z, Yu J, Cheng X, Zong X, Xu J, et al. 2014. The rice basic helix-loop-helix transcription factor TDR INTERACTING PROTEIN2 is a central switch in early anther development. The Plant Cell 26:1512−24 doi: 10.1105/tpc.114.123745 |
[66] |
Ko SS, Li MJ, Sun-Ben Ku M, Ho YC, Lin YJ, et al. 2014. The bHLH142 transcription factor coordinates with TDR1 to modulate the expression of EAT1 and regulate pollen development in rice. The Plant Cell 26:2486−504 doi: 10.1105/tpc.114.126292 |
[67] |
Cheng Y, Dai X, Zhao Y. 2006. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes & Development 20:1790−99 doi: 10.1101/gad.1415106 |
[68] |
Yao X, Tian L, Yang J, Zhao Y, Zhu Y, et al. 2018. Auxin production in diploid microsporocytes is necessary and sufficient for early stages of pollen development. PLoS Genetics 14:e1007397 doi: 10.1371/journal.pgen.1007397 |
[69] |
Zheng Y, Wang D, Ye S, Chen W, Li G, et al. 2021. Auxin guides germ-cell specification in Arabidopsis anthers. PNAS 118:e2101492118 doi: 10.1073/pnas.2101492118 |
[70] |
Yang J, Tian L, Sun M, Huang X, Zhu J, et al. 2013. AUXIN RESPONSE FACTOR17 is essential for pollen wall pattern formation in Arabidopsis. Plant Physiology 162:720−31 doi: 10.1104/pp.113.214940 |
[71] |
Wang B, Xue J, Yu Y, Liu S, Zhang J, et al. 2017. Fine regulation of ARF17 for anther development and pollen formation. BMC Plant Biology 17:243 doi: 10.1186/s12870-017-1185-1 |
[72] |
Xu X, Wang B, Feng Y, Xue J, Qian X, et al. 2019. AUXIN RESPONSE FACTOR17 directly regulates MYB108 for anther dehiscence. Plant Physiology 181:645−55 doi: 10.1104/pp.19.00576 |
[73] |
Ye Q, Zhu W, Li L, Zhang S, Yin Y, et al. 2010. Brassinosteroids control male fertility by regulating the expression of key genes involved in Arabidopsis anther and pollen development. PNAS 107:6100−5 doi: 10.1073/pnas.0912333107 |
[74] |
Chen W, Lv M, Wang Y, Wang P, Cui Y, et al. 2019. BES1 is activated by EMS1-TPD1-SERK1/2-mediated signaling to control tapetum development in Arabidopsis thaliana. Nature Communications 10:4164 doi: 10.1038/s41467-019-12118-4 |
[75] |
Aya K, Ueguchi-Tanaka M, Kondo M, Hamada K, Yano K, et al. 2009. Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. The Plant Cell 21:1453−72 doi: 10.1105/tpc.108.062935 |
[76] |
Sakata T, Oda S, Tsunaga Y, Shomura H, Kawagishi-Kobayashi M, et al. 2014. Reduction of gibberellin by low temperature disrupts pollen development in rice. Plant Physiology 164:2011−9 doi: 10.1104/pp.113.234401 |
[77] |
Plackett ARG, Ferguson AC, Powers SJ, Wanchoo-Kohli A, Phillips AL, et al. 2014. DELLA activity is required for successful pollen development in the Columbia ecotype of Arabidopsis. New Phytologist 201:825−36 doi: 10.1111/nph.12571 |
[78] |
Jin Y, Song X, Chang H, Zhao Y, Cao C, et al. 2021. The GA-DELLA-OsMS188 module controls male reproductive development in rice. New phytologist 233:2629−42 doi: 10.1111/nph.17939 |
[79] |
Clément C, Laporte P, Audran JC. 1998. The loculus content and tapetum during pollen development in Lilium. Sexual Plant Reproduction 11:94−106 doi: 10.1007/s004970050125 |
[80] |
Clément C, Audran JC. 1995. Anther wall layers control pollen sugar nutrition in Lilium. Protoplasma 187:172−81 doi: 10.1007/BF01280246 |
[81] |
Roitsch T, González MC. 2004. Function and regulation of plant invertases: sweet sensations. Trends in Plant Science 9:606−13 doi: 10.1016/j.tplants.2004.10.009 |
[82] |
Goetz M, Godt DE, Guivarc'h A, Kahmann U, Chriqui D, et al. 2001. Induction of male sterility in plants by metabolic engineering of the carbohydrate supply. PNAS 98:6522−27 doi: 10.1073/pnas.091097998 |
[83] |
Engelke T, Hirsche J, Roitsch T. 2010. Anther-specific carbohydrate supply and restoration of metabolically engineered male sterility. Journal of Experimental Botany 61:2693−706 doi: 10.1093/jxb/erq105 |
[84] |
Hirsche J, Engelke T, Völler D, Götz M, Roitsch T. 2009. Interspecies compatibility of the anther specific cell wall invertase promoters from Arabidopsis and tobacco for generating male sterile plants. Theoretical and Applied Genetics 118:235−45 doi: 10.1007/s00122-008-0892-2 |
[85] |
Ranwala AP, Miller WB. 1998. Sucrose-cleaving enzymes and carbohydrate pools in Lilium longiflorum floral organs. Physiologia Plantarum 103:541−50 doi: 10.1034/j.1399-3054.1998.1030413.x |
[86] |
Zhang H, Liang W, Yang X, Luo X, Jiang N, et al. 2010. Carbon starved anther encodes a MYB domain protein that regulates sugar partitioning required for rice pollen development. The Plant Cell 22:672−89 doi: 10.1105/tpc.109.073668 |
[87] |
Li J, Huang Y, Tan H, Yang X, Tian L, et al. 2015. An endoplasmic reticulum magnesium transporter is essential for pollen development in Arabidopsis. Plant Science 231:212−20 doi: 10.1016/j.plantsci.2014.12.008 |
[88] |
Li L, Tutone AF, Drummond RSM, Gardner RC, Luan S. 2001. A novel family of magnesium transport genes in Arabidopsis. The Plant Cell 13:2761−75 doi: 10.1105/tpc.010352 |
[89] |
Li L, Sokolov LN, Yang Y, Li D, Ting J, et al. 2008. A mitochondrial magnesium transporter functions in Arabidopsis pollen development. Molecular Plant 1:675−85 doi: 10.1093/mp/ssn031 |
[90] |
Chen J, Li L, Liu Z, Yuan Y, Guo L, et al. 2009. Magnesium transporter AtMGT9 is essential for pollen development in Arabidopsis. Cell Research 19:887−98 doi: 10.1038/cr.2009.58 |
[91] |
Xu X, Wang B, Lou Y, Han W, Lu J, et al. 2015. Magnesium transporter 5 plays an important role in Mg transport for male gametophyte development in Arabidopsis. The Plant Journal 84:925−36 doi: 10.1111/tpj.13054 |
[92] |
Xu X, Qian X, Wang K, Yu Y, Guo Y, et al. 2020. Slowing development facilitates Arabidopsis mgt mutants to accumulate enough magnesium for pollen formation and fertility restoration. Frontiers in Plant Science 11:621338 doi: 10.3389/fpls.2020.621338 |
[93] |
Micheli F. 2001. Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Science 6:414−19 doi: 10.1016/s1360-1385(01)02045-3 |
[94] |
Ridley BL, O'Neill MA, Mohnen D. 2001. Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57:929−67 doi: 10.1016/S0031-9422(01)00113-3 |
[95] |
Wikiera A, Mika M. 2013. Structure and properties of pectin. Postepy biochemii 59:89−94 |
[96] |
Preuss D, Rhee SY, Davis RW. 1994. Tetrad analysis possible in Arabidopsis with mutation of the QUARTET (QRT) genes. Science 264:1458−60 doi: 10.1126/science.8197459 |
[97] |
Rhee SY, Somerville CR. 1998. Tetrad pollen formation in quartet mutants of Arabidopsis thaliana is associated with persistence of pectic polysaccharides of the pollen mother cell wall. The Plant Journal 15:79−88 doi: 10.1046/j.1365-313X.1998.00183.x |
[98] |
Rhee SY, Osborne E, Poindexter PD, Somerville CR. 2003. Microspore separation in the quartet 3 mutants of Arabidopsis is impaired by a defect in a developmentally regulated polygalacturonase required for pollen mother cell wall degradation. Plant Physiology 133:1170−80 doi: 10.1104/pp.103.028266 |
[99] |
Francis KE, Lam SY, Copenhaver GP. 2006. Separation of Arabidopsis pollen tetrads is regulated by QUARTET1, a pectin methylesterase gene. Plant Physiology 142:1004−13 doi: 10.1104/pp.106.085274 |
[100] |
Ogawa M, Kay P, Wilson S, Swain SM. 2009. ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1), ADPG2, and QUARTET2 are polygalacturonases required for cell separation during reproductive development in Arabidopsis. The Plant Cell 21:216−33 doi: 10.1105/tpc.108.063768 |
[101] |
Dong X, Hong Z, Sivaramakrishnan M, Mahfouz M, Verma DPS. 2005. Callose synthase (CalS5) is required for exine formation during microgametogenesis and for pollen viability in Arabidopsis. The Plant Journal 42:315−28 doi: 10.1111/j.1365-313X.2005.02379.x |
[102] |
Nishikawa SI, Zinkl GM, Swanson RJ, Maruyama D, Preuss D. 2005. Callose (β-1,3 glucan) is essential for Arabidopsis pollen wall patterning, but not tube growth. BMC Plant Biology 5:22 doi: 10.1186/1471-2229-5-22 |
[103] |
Xiong S, Zeng Q, Hou J, Hou L, Zhu J, et al. 2020. The temporal regulation of TEK contributes to pollen wall exine patterning. PLoS Genetics 16:e1008807 doi: 10.1371/journal.pgen.1008807 |
[104] |
Frankel R, Izhar S, Nitsan J. 1969. Timing of callase activity and cytoplasmic male sterility inPetunia. Biochemical Genetics 3:451−55 doi: 10.1007/BF00485605 |
[105] |
Stieglitz H, Stern H. 1973. Regulation of β-1,3-glucanase activity in developing anthers of Lilium. Developmental Biology 34:169−73 doi: 10.1016/0012-1606(73)90347-3 |
[106] |
Stieglitz H. 1977. Role of β-1,3-glucanase in postmeiotic microspore release. Developmental Biology 57:87−97 doi: 10.1016/0012-1606(77)90356-6 |
[107] |
Hird DL, Worrall D, Hodge R, Smartt S, Paul W, Scott R. 1993. The anther-specific protein encoded by the Brassica napus and Arabidopsis thaliana A6 gene displays similarity to β-1,3-glucanases. The Plant Journal 4:1023−33 doi: 10.1046/j.1365-313X.1993.04061023.x |
[108] |
Xu J, Ding Z, Vizcay-Barrena G, Shi J, Liang W, et al. 2014. ABORTED MICROSPORES acts as a master regulator of pollen wall formation in Arabidopsis. The Plant Cell 26:1544−56 doi: 10.1105/tpc.114.122986 |
[109] |
Dobritsa AA, Geanconteri A, Shrestha J, Carlson A, Kooyers N, et al. 2011. A large-scale genetic screen in Arabidopsis to identify genes involved in pollen exine production. Plant Physiology 157:947−70 doi: 10.1104/pp.111.179523 |
[110] |
Suzuki T, Narciso JO, Zeng W, van de Meene A, Yasutomi M, et al. 2017. KNS4/UPEX1: A type II arabinogalactan β-(1,3)-galactosyltransferase required for pollen exine development. Plant Physiology 173:183−205 doi: 10.1104/pp.16.01385 |
[111] |
Wang K, Yu Y, Jia X, Zhou S, Zhang F, et al. 2021. Delayed callose degradation restores the fertility of multiple P/TGMS lines in Arabidopsis. Journal of Integrative Plant Biology 64:717−30 doi: 10.1111/jipb.13205 |
[112] |
de Azevedo Souza C, Kim SS, Koch S, Kienow L, Schneider K, et al. 2009. A novel fatty Acyl-CoA Synthetase is required for pollen development and sporopollenin biosynthesis in Arabidopsis. The Plant Cell 21:507−25 doi: 10.1105/tpc.108.062513 |
[113] |
Morant M, Jørgensen K, Schaller H, Pinot F, Møller BL, et al. 2007. CYP703 is an ancient cytochrome P450 in land plants catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen. The Plant Cell 19:1473−87 doi: 10.1105/tpc.106.045948 |
[114] |
Dobritsa AA, Shrestha J, Morant M, Pinot F, Matsuno M, et al. 2009. CYP704B1 is a long-chain fatty acid ω-hydroxylase essential for sporopollenin synthesis in pollen of Arabidopsis. Plant Physiology 151:574−89 doi: 10.1104/pp.109.144469 |
[115] |
Aarts MG, Hodge R, Kalantidis K, Florack D, Wilson ZA, et al. 1997. The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes. The Plant Journal 12:615−23 doi: 10.1046/j.1365-313X.1997.00615.x |
[116] |
Chen W, Yu X, Zhang K, Shi J, De Oliveira S, et al. 2011. Male Sterile2 encodes a plastid-localized fatty acyl carrier protein reductase required for pollen exine development in Arabidopsis. Plant Physiology 157:842−53 doi: 10.1104/pp.111.181693 |
[117] |
Grienenberger E, Kim SS, Lallemand B, Geoffroy P, Heintz D, et al. 2010. Analysis of TETRAKETIDE α-PYRONE REDUCTASE function in Arabidopsis thaliana reveals a previously unknown, but conserved, biochemical pathway in sporopollenin monomer biosynthesis. The Plant Cell 22:4067−83 doi: 10.1105/tpc.110.080036 |
[118] |
Kim SS, Grienenberger E, Lallemand B, Colpitts CC, Kim SY, et al. 2010. LAP6/POLYKETIDE SYNTHASE A and LAP5/POLYKETIDE SYNTHASE B encode hydroxyalkyl alpha-pyrone synthases required for pollen development and sporopollenin biosynthesis in Arabidopsis thaliana. The Plant Cell 22:4045−66 doi: 10.1105/tpc.110.080028 |
[119] |
Dobritsa AA, Lei Z, Nishikawa SI, Urbanczyk-Wochniak E, Huhman DV, et al. 2010. LAP5 and LAP6 encode anther-specific proteins with similarity to chalcone synthase essential for pollen exine development in Arabidopsis. Plant physiology 153:937−55 doi: 10.1104/pp.110.157446 |
[120] |
Quilichini TD, Friedmann MC, Samuels AL, Douglas CJ. 2010. ATP-binding cassette transporter G26 is required for male fertility and pollen exine formation in Arabidopsis. Plant Physiology 154:678−90 doi: 10.1104/pp.110.161968 |
[121] |
Choi H, Jin JY, Choi S, Hwang JU, Kim YY, et al. 2011. An ABCG/WBC-type ABC transporter is essential for transport of sporopollenin precursors for exine formation in developing pollen. The Plant Journal 65:181−93 doi: 10.1111/j.1365-313X.2010.04412.x |
[122] |
Dou XY, Yang KZ, Zhang Y, Wang W, Liu XL, et al. 2011. WBC27, an adenosine tri-phosphate-binding cassette protein, controls pollen wall formation and patterning in Arabidopsis. Journal of Integrative Plant Biology 53:74−88 doi: 10.1111/j.1744-7909.2010.01010.x |
[123] |
Qin P, Tu B, Wang Y, Deng L, Quilichini TD, et al. 2013. ABCG15 encodes an ABC transporter protein, and is essential for post-meiotic anther and pollen exine development in rice. Plant and Cell Physiology 54:138−54 doi: 10.1093/pcp/pcs162 |
[124] |
Osthoff KS, Wiermann R. 1987. Phenols as integrated compounds of sporopollenin from pinus pollen. Journal of Plant Physiology 131:5−15 doi: 10.1016/S0176-1617(87)80262-6 |
[125] |
Domínguez E, Mercado JA, Quesada MA, Heredia A. 1999. Pollen sporopollenin: degradation and structural elucidation. Sexual Plant Reproduction 12:171−78 doi: 10.1007/s004970050189 |
[126] |
Li FS, Phyo P, Jacobowitz J, Hong M, Weng JK. 2019. The molecular structure of plant sporopollenin. Nature Plants 5:41−6 doi: 10.1038/s41477-018-0330-7 |
[127] |
Mikhael A, Jurcic K, Schneider C, Karr D, Fisher GL, et al. 2020. Demystifying and unravelling the molecular structure of the biopolymer sporopollenin. Rapid Communications in Mass Spectrometry 34:e8740 doi: 10.1002/rcm.8740 |
[128] |
Xue J, Zhang B, Zhan H, Lv Y, Jia X, et al. 2020. Phenylpropanoid derivatives are essential components of sporopollenin in vascular plants. Molecular Plant 13:1644−53 doi: 10.1016/j.molp.2020.08.005 |
[129] |
Rozema J, Broekman RA, Blokker P, Meijkamp BB, de Bakker N, et al. 2001. UV-B absorbance and UV-B absorbing compounds (para-coumaric acid) in pollen and sporopollenin: the perspective to track historic UV-B levels. Journal of Photochemistry and Photobiology B: Biology 62:108−17 doi: 10.1016/S1011-1344(01)00155-5 |
[130] |
Jia Q, Zhu J, Xu X, Lou Y, Zhang Z, et al. 2015. Arabidopsis AT-hook protein TEK positively regulates the expression of arabinogalactan proteins for nexine formation. Molecular Plant 8:251−60 doi: 10.1016/j.molp.2014.10.001 |
[131] |
Preuss D, Lemieux B, Yen G, Davis RW. 1993. A conditional sterile mutation eliminates surface components from Arabidopsis pollen and disrupts cell signaling during fertilization. Genes & Development 7:974−85 doi: 10.1101/gad.7.6.974 |
[132] |
Hülskamp M, Kopczak SD, Horejsi TF, Kihl BK, Pruitt RE. 1995. Identification of genes required for pollen-stigma recognition inArabidopsis thaliana. The Plant Journal 8:703−14 doi: 10.1046/j.1365-313X.1995.08050703.x |
[133] |
Piffanelli P, Murphy DJ. 1998. Novel organelles and targeting mechanisms in the anther tapetum. Trends in Plant Science 3:250−52 doi: 10.1016/S1360-1385(98)01260-6 |
[134] |
Pacini E, Hesse M. 2002. Types of pollen dispersal units in orchids, and their consequences for germination and fertilization. Annals of Botany 89:653−64 doi: 10.1093/aob/mcf138 |
[135] |
Blackmore S, Wortley AH, Skvarla JJ, Rowley JR. 2007. Pollen wall development in flowering plants. New Phytologist 174:483−98 doi: 10.1111/j.1469-8137.2007.02060.x |
[136] |
Wheeler MJ, Franklin-Tong VE, Franklin FCH. 2001. The molecular and genetic basis of pollen-pistil interactions. New Phytologist 151:565−84 doi: 10.1046/j.0028-646x.2001.00229.x |
[137] |
Jia X, Xue J, Zhang F, Yao C, Shen S, et al. 2021. A dye combination for the staining of pollen coat and pollen wall. Plant Reproduction 34:91−101 doi: 10.1007/s00497-021-00412-5 |
[138] |
Piffanelli P, Ross JHE, Murphy DJ. 1997. Intra- and extracellular lipid composition and associated gene expression patterns during pollen development in Brassica napus. The Plant Journal 11:549−62 doi: 10.1046/j.1365-313X.1997.11030549.x |
[139] |
Xue Z, Xu X, Zhou Y, Wang X, Zhang Y, et al. 2018. Deficiency of a triterpene pathway results in humidity-sensitive genic male sterility in rice. Nature Communications 9:604 doi: 10.1038/s41467-018-03048-8 |
[140] |
Mayfield JA, Fiebig A, Johnstone SE, Preuss D. 2001. Gene families from the Arabidopsis thaliana pollen coat proteome. Science 292:2482−85 doi: 10.1126/science.1060972 |
[141] |
Mayfield JA, Preuss D. 2000. Rapid initiation of Arabidopsis pollination requires the oleosin-domain protein GRP17. Nature Cell Biology 2:128−30 doi: 10.1038/35000084 |
[142] |
Updegraff EP, Zhao F, Preuss D. 2009. The extracellular lipase EXL4 is required for efficient hydration of Arabidopsis pollen. Sexual Plant Reproduction 22:197−204 doi: 10.1007/s00497-009-0104-5 |
[143] |
Jessen D, Olbrich A, Knüfer J, Krüger A, Hoppert M, et al. 2011. Combined activity of LACS1 and LACS4 is required for proper pollen coat formation in Arabidopsis. The Plant Journal 68:715−26 doi: 10.1111/j.1365-313X.2011.04722.x |
[144] |
Koornneef M, Hanhart CJ, Thiel F. 1989. A genetic and phenotypic description of Eceriferum (cer) mutants in Arabidopsis thaliana. Journal of Heredity 80:118−22 doi: 10.1093/oxfordjournals.jhered.a110808 |
[145] |
Hannoufa A, Negruk V, Eisner G, Lemieux B. 1996. The CER3 gene of Arabidopsis thaliana is expressed in leaves, stems, roots, flowers and apical meristems. The Plant Journal 10:459−67 doi: 10.1046/j.1365-313X.1996.10030459.x |
[146] |
Zhang Z, Zhan H, Lu J, Xiong S, Yang N, et al. 2021. Tapetal 3-Ketoacyl-Coenzyme a synthases are involved in pollen coat lipid accumulation for pollen-stigma interaction in Arabidopsis. Frontiers in Plant Science 12:770311 doi: 10.3389/fpls.2021.770311 |
[147] |
Joubès J, Raffaele S, Bourdenx B, Garcia C, Laroche-Traineau J, et al. 2008. The VLCFA elongase gene family in Arabidopsis thaliana: phylogenetic analysis, 3D modelling and expression profiling. Plant molecular biology 67:547−66 doi: 10.1007/s11103-008-9339-z |
[148] |
Haslam TM, Kunst L. 2013. Extending the story of very-long-chain fatty acid elongation. Plant Science 210:93−107 doi: 10.1016/j.plantsci.2013.05.008 |
[149] |
Ariizumi T, Hatakeyama K, Hinata K, Sato S, Kato T, et al. 2003. A novel male-sterile mutant ofArabidopsis thaliana, f aceless pollen-1, produces pollen with a smooth surface and an acetolysis-sensitive exine. Plant Molecular Biology 53:107−16 doi: 10.1023/B:PLAN.0000009269.97773.70 |
[150] |
Chen XB, Goodwin SM, Boroff VL, Liu XL, Jenks MA. 2003. Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production. The Plant Cell 15:1170−85 doi: 10.1105/tpc.010926 |
[151] |
Rowland O, Lee R, Franke R, Schreiber L, Kunst L. 2007. The CER3 wax biosynthetic gene from Arabidopsis thaliana is allelic to WAX2/YRE/FLP1. FEBS letters 581:3538−44 doi: 10.1016/j.febslet.2007.06.065 |
[152] |
Kurata T, Kawabata-Awai C, Sakuradani E, Shimizu S, Okada K, Wada T. 2003. The YORE-YORE gene regulates multiple aspects of epidermal cell differentiation in Arabidopsis. The Plant journal:for cell and molecular biology 36:55−66 doi: 10.1046/j.1365-313X.2003.01854.x |
[153] |
Bernard A, Domergue F, Pascal S, Jetter R, Renne C, et al. 2012. Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex. The Plant cell 24:3106−18 doi: 10.1105/tpc.112.099796 |
[154] |
Ishiguro S, Nishimori Y, Yamada M, Saito H, Suzuki T, et al. 2010. The Arabidopsis FLAKY POLLEN1 gene encodes a 3-hydroxy-3-methylglutaryl-coenzyme A synthase required for development of tapetum-specific organelles and fertility of pollen grains. Plant & Cell Physiology 51:896−911 doi: 10.1093/pcp/pcq068 |
[155] |
Suzuki T, Tsunekawa S, Koizuka C, Yamamoto K, Imamura J, et al. 2013. Development and disintegration of tapetum-specific lipid-accumulating organelles, elaioplasts and tapetosomes, in Arabidopsis thaliana and Brassica napus. Plant Science 207:25−36 doi: 10.1016/j.plantsci.2013.02.008 |
[156] |
van der Veen JH, Wirtz P. 1968. EMS-induced genic male sterility in Arabidopsis thaliana: a model selection experiment. Euphytica 17:371−77 doi: 10.1007/BF00056238 |
[157] |
Wilson Z, Vizcay Barrena G, Yang C. 2007. Arabidopsis male sterility1 regulates programmed cell death in the anther tapetum and pollen wall development. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 146:S203 doi: 10.1016/j.cbpa.2007.01.451 |
[158] |
Rejón JD, Delalande F, Schaeffer-Reiss C, Alché JD, Rodríguez-García MI, et al. 2016. The pollen coat proteome: at the cutting edge of plant reproduction. Proteomes 4:5 doi: 10.3390/proteomes4010005 |
[159] |
Doughty J, Dixon S, Hiscock SJ, Willis AC, Parkin IAP, Dickinson HG. 1998. PCP-A1, a defensin-like Brassica pollen coat protein that binds the S locus glycoprotein, is the product of gametophytic gene expression. The Plant Cell 10:1333−47 doi: 10.1105/tpc.10.8.1333 |
[160] |
Takayama S, Shiba H, Iwano M, Asano K, Hara M, et al. 2000. Isolation and characterization of pollen coat proteins of Brassica campestris that interact with S locus-related glycoprotein 1 involved in pollen-stigma adhesion. PNAS 97:3765−70 doi: 10.1073/pnas.97.7.3765 |
[161] |
Nasrallah JB, Nasrallah ME. 2014. S-locus receptor kinase signalling. Biochemical Society Transactions 42:313−9 doi: 10.1042/BST20130222 |
[162] |
Zhan H, Xiong H, Wang S, Yang Z. 2018. Anther endothecium-derived very-long-chain fatty acids facilitate pollen hydration in Arabidopsis. Molecular Plant 11:1101−4 doi: 10.1016/j.molp.2018.05.002 |
[163] |
Haslam TM, Mañas-Fernández A, Zhao LF, Kunst L. 2012. Arabidopsis ECERIFERUM2 is a component of the fatty acid elongation machinery required for fatty acid extension to exceptional lengths. Plant Physiology 160:1164−74 doi: 10.1104/pp.112.201640 |
[164] |
Haslam TM, Haslam R, Thoraval D, Pascal S, Delude C, et al. 2015. ECERIFERUM2-LIKE proteins have unique biochemical and physiological functions in very-long-chain fatty acid elongation. Plant Physiology 167:682−92 doi: 10.1104/pp.114.253195 |
[165] |
Haslam TM, Gerelle WK, Graham SW, Kunst L. 2017. The unique role of the ECERIFERUM2-LIKE clade of the BAHD acyltransferase superfamily in cuticular wax metabolism. Plants-Basel 6:23 doi: 10.3390/plants6020023 |
[166] |
Xia Y, Nikolau BJ, Schnable PS. 1997. Developmental and hormonal regulation of the Arabidopsis CER2 gene that codes for a nuclear-localized protein required for the normal accumulation of cuticular waxes. Plant Physiology 115:925−37 doi: 10.1104/pp.115.3.925 |
[167] |
Fiebig A, Mayfield JA, Miley NL, Chau S, Fischer RL, et al. 2000. Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems. The Plant Cell 12:2001−8 doi: 10.1105/tpc.12.10.2001 |
[168] |
Doughty J, Hedderson F, McCubbin A, Dickinson H. 1993. Interaction between a coating-borne peptide of the Brassica pollen grain and stigmatic S (self-incompatibility)-locus-specific glycoproteins. PNAS 90:467−71 doi: 10.1073/pnas.90.2.467 |
[169] |
Wang L, Clarke LA, Eason RJ, Parker CC, Qi B, et al. 2017. PCP-B class pollen coat proteins are key regulators of the hydration checkpoint in Arabidopsis thaliana pollen-stigma interactions. New Phytologist 213:764−77 doi: 10.1111/nph.14162 |
[170] |
Liu C, Shen L, Xiao Y, Vyshedsky D, Peng C, et al. 2021. Pollen PCP-B peptides unlock a stigma peptide-receptor kinase gating mechanism for pollination. Science 372:171−75 doi: 10.1126/science.abc6107 |
[171] |
Wei LQ, Yan LF, Wang T. 2011. Deep sequencing on genome-wide scale reveals the unique composition and expression patterns of microRNAs in developing pollen of Oryza sativa. Genome Biology 12:R53 doi: 10.1186/gb-2011-12-6-r53 |
[172] |
Chambers C, Shuai B. 2009. Profiling microRNA expression in Arabidopsis pollen using microRNA array and real-time PCR. BMC Plant Biology 9:87 doi: 10.1186/1471-2229-9-87 |
[173] |
Tsuji H, Aya K, Ueguchi-Tanaka M, Shimada Y, Nakazono M, et al. 2006. GAMYB controls different sets of genes and is differentially regulated by microRNA in aleurone cells and anthers. The Plant Journal 47:427−44 doi: 10.1111/j.1365-313X.2006.02795.x |
[174] |
Achard P, Herr A, Baulcombe DC, Harberd NP. 2004. Modulation of floral development by a gibberellin-regulated microRNA. Development 131:3357−65 doi: 10.1242/dev.01206 |
[175] |
Sun Y, Xiong X, Wang Q, Zhu L, Wang L, et al. 2021. Integrated analysis of small RNA, transcriptome, and degradome sequencing reveals the MiR156, MiR5488 and MiR399 are involved in the regulation of male sterility in PTGMS rice. International Journal of Molecular Sciences 22:2260 doi: 10.3390/ijms22052260 |
[176] |
Wu S, Tan H, Hao X, Xie Z, Wang X, et al. 2019. Profiling miRNA expression in photo-thermo-sensitive male genic sterility line (PTGMS) PA64S under high and low temperature. Plant Signaling & Behavior 14:1679015 doi: 10.1080/15592324.2019.1679015 |
[177] |
Li Z, An X, Zhu T, Yan T, Wu S, et al. 2019. Discovering and constructing ceRNA-miRNA-target gene regulatory networks during anther development in maize. International Journal of Molecular Sciences 20:3480 doi: 10.3390/ijms20143480 |
[178] |
Omidvar V, Mohorianu I, Dalmay T, Fellner M. 2015. Identification of miRNAs with potential roles in regulation of anther development and male-sterility in 7B-1 male-sterile tomato mutant. BMC Genomics 16:878 doi: 10.1186/s12864-015-2077-0 |
[179] |
Slotkin RK, Vaughn M, Borges F, Tanurdžić M, Becker JD, et al. 2009. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136:461−72 doi: 10.1016/j.cell.2008.12.038 |
[180] |
Zhai J, Zhang H, Arikit S, Huang K, Nan G, et al. 2015. Spatiotemporally dynamic, cell-type-dependent premeiotic and meiotic phasiRNAs in maize anthers. PNAS 112:3146−51 doi: 10.1073/pnas.1418918112 |
[181] |
Teng C, Zhang H, Hammond R, Huang K, Meyers BC, Walbot V. 2020. Dicer-like 5 deficiency confers temperature-sensitive male sterility in maize. Nature Communications 11:2912 doi: 10.1038/s41467-020-16634-6 |
[182] |
Long J, Walker J, She W, Aldridge B, Gao H, et al. 2021. Nurse cell-derived small RNAs define paternal epigenetic inheritance in Arabidopsis. Science 373:eabh0556 doi: 10.1126/science.abh0556 |
[183] |
Zhou X, Huang K, Teng C, Abdelgawad A, Batish M, et al. 2022. 24-nt phasiRNAs move from tapetal to meiotic cells in maize anthers. New Phytologist 235:488−501 doi: 10.1111/nph.18167 |