[1]
|
Scott RJ, Spielman M, Dickinson HG. 2004. Stamen structure and function. The Plant Cell 16:S46−S60 doi: 10.1105/tpc.017012
CrossRef Google Scholar
|
[2]
|
Goldberg RB, Beals TP, Sanders PM. 1993. Anther development: basic principles and practical applications. The Plant Cell 5:1217−29 doi: 10.1105/tpc.5.10.1217
CrossRef Google Scholar
|
[3]
|
Sun L, Xiang X, Yang Z, Yu P, Wen X, et al. 2018. OsGPAT3 plays a critical role in anther wall programmed cell death and pollen development in rice. International Journal of Molecular Sciences 10:4017 doi: 10.3390/ijms19124017
CrossRef Google Scholar
|
[4]
|
Yi J, Moon S, Lee YS, Zhu L, Liang W, et al. 2016. Defective Tapetum Cell Death 1 (DTC1) Regulates ROS Levels by Binding to Metallothionein during Tapetum Degeneration. Plant Physiology 170:1611−23 doi: 10.1104/pp.15.01561
CrossRef Google Scholar
|
[5]
|
Chen L, Liu YG. 2014. Male sterility and fertility restoration in crops. Annual review of plant biology 65:579−606 doi: 10.1146/annurev-arplant-050213-040119
CrossRef Google Scholar
|
[6]
|
Wilson ZA, Yang C. 2004. Plant gametogenesis: conservation and contrasts in development. Reproduction (Cambridge, England) 128:483−92 doi: 10.1530/rep.1.00306
CrossRef Google Scholar
|
[7]
|
Brett CT, Waldron KW. 1990. Physiology and Biochemistry of Plant Cell Walls. Topics in Plant Physiology. eds. Black M, Chapman J. London: Unwin Hyman. 194 pp.
|
[8]
|
Carpita NC, Gibeaut DM. 1993. Structural models of primary cell walls in flowering plants consistency of molecular structure with the physical properties of the walls during growth. The Plant Journal 3:1−30 doi: 10.1111/j.1365-313X.1993.tb00007.x
CrossRef Google Scholar
|
[9]
|
Matsuo Y, Arimura S, Tsutsumi N. 2013. Distribution of cellulosic wall in the anthers of Arabidopsis during microsporogenesis. Plant Cell Reports 32:1743−50 doi: 10.1007/s00299-013-1487-1
CrossRef Google Scholar
|
[10]
|
Shi Q, Lou Y, Shen S, Wang S, Zhou L, et al. 2021. A cellular mechanism underlying the restoration of thermo/photoperiod-sensitive genic male sterility. Molecular Plant 14:2104−14 doi: 10.1016/j.molp.2021.08.019
CrossRef Google Scholar
|
[11]
|
Heslop-Harrison J. 1963. An ultrastructural study of pollen wall ontogeny in Silene pendula. Grana Palynologica 4:7−24 doi: 10.1080/00173136309437854
CrossRef Google Scholar
|
[12]
|
Piffanelli P, Ross JHE, Murphy DJ. 1998. Biogenesis and function of the lipidic structures of pollen grains. Sexual Plant Reproduction 11:65−80 doi: 10.1007/s004970050122
CrossRef Google Scholar
|
[13]
|
Zhou Q, Zhu J, Cui Y, Yang Z. 2015. Ultrastructure analysis reveals sporopollenin deposition and nexine formation at early stage of pollen wall development in Arabidopsis. Science Bulletin 60:273−76 doi: 10.1007/s11434-014-0723-6
CrossRef Google Scholar
|
[14]
|
Huang L, Cao J, Zhang A, Ye Y, Zhang Y, et al. 2009. The polygalacturonase gene BcMF2 from Brassica campestris is associated with intine development. Journal of Experimental Botany 60:301−13 doi: 10.1093/jxb/ern295
CrossRef Google Scholar
|
[15]
|
Li J, Yu M, Geng L, Zhao J. 2010. The fasciclin-like arabinogalactan protein gene, FLA3, is involved in microspore development of Arabidopsis. The Plant Journal 64:482−97 doi: 10.1111/j.1365-313X.2010.04344.x
CrossRef Google Scholar
|
[16]
|
Xu T, Zhang C, Zhou Q, Yang Z. 2016. Pollen wall pattern in Arabidopsis. Science Bulletin 61:832−37 doi: 10.1007/s11434-016-1062-6
CrossRef Google Scholar
|
[17]
|
Ariizumi T, Toriyama K. 2011. Genetic regulation of sporopollenin synthesis and pollen exine development. Annual Review of Plant Biology 62:437−60 doi: 10.1146/annurev-arplant-042809-112312
CrossRef Google Scholar
|
[18]
|
Jiang J, Zhang Z, Cao J. 2013. Pollen wall development: the associated enzymes and metabolic pathways. Plant Biology 15:249−63 doi: 10.1111/j.1438-8677.2012.00706.x
CrossRef Google Scholar
|
[19]
|
Quilichini TD, Grienenberger E, Douglas CJ. 2015. The biosynthesis, composition and assembly of the outer pollen wall: a tough case to crack. Phytochemistry 113:170−82 doi: 10.1016/j.phytochem.2014.05.002
CrossRef Google Scholar
|
[20]
|
Shi J, Cui M, Yang L, Kim YJ, Zhang D. 2015. Genetic and biochemical mechanisms of pollen wall development. Trends in Plant Science 20:741−53 doi: 10.1016/j.tplants.2015.07.010
CrossRef Google Scholar
|
[21]
|
Grienenberger E, Quilichini TD. 2021. The toughest material in the plant kingdom: an update on sporopollenin. Frontiers in Plant Science 12:703864 doi: 10.3389/fpls.2021.703864
CrossRef Google Scholar
|
[22]
|
Pacini E, Franchi GG, Hesse M. 1985. The tapetum: its form, function, and possible phylogeny in Embryophyta. Plant Systematics and Evolution 149:155−85 doi: 10.1007/BF00983304
CrossRef Google Scholar
|
[23]
|
Mariani C, de Beuckeleer M, Truettner J, Leemans J, Goldberg RB. 1990. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 347:737−41 doi: 10.1038/347737a0
CrossRef Google Scholar
|
[24]
|
Phan HA, Iacuone S, Li SF, Parish RW. 2011. The MYB80 transcription factor is required for pollen development and the regulation of tapetal programmed cell death in Arabidopsis thaliana. The Plant cell 23:2209−24 doi: 10.1105/tpc.110.082651
CrossRef Google Scholar
|
[25]
|
Zhang D, Liu D, Lv X, Wang Y, Xun Z, et al. 2014. The cysteine protease CEP1, a key executor involved in tapetal programmed cell death, regulates pollen development in Arabidopsis. The Plant Cell 26:2939−61 doi: 10.1105/tpc.114.127282
CrossRef Google Scholar
|
[26]
|
Xie H, Wan Z, Li S, Zhang Y. 2014. Spatiotemporal production of reactive oxygen species by NADPH oxidase is critical for tapetal programmed cell death and pollen development in Arabidopsis. The Plant Cell 26:2007−23 doi: 10.1105/tpc.114.125427
CrossRef Google Scholar
|
[27]
|
Cui Y, Zhao Q, Xie H, Wong W, Wang X, et al. 2017. MONENSIN SENSITIVITY1 (MON1)/CALCIUM CAFFEINE ZINC SENSITIVITY1 (CCZ1)-mediated Rab7 activation regulates tapetal programmed cell death and pollen development. Plant Physiology 173:206−18 doi: 10.1104/pp.16.00988
CrossRef Google Scholar
|
[28]
|
Cheng Z, Guo X, Zhang J, Liu Y, Wang B, et al. 2020. βVPE is involved in tapetal degradation and pollen development by activating proprotease maturation in Arabidopsis thaliana. Journal of Experimental Botany 71:1943−55 doi: 10.1093/jxb/erz560
CrossRef Google Scholar
|
[29]
|
Sorensen AM, Kröber S, Unte US, Huijser P, Dekker K, et al. 2003. The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. The Plant Journal 33:413−23 doi: 10.1046/j.1365-313X.2003.01644.x
CrossRef Google Scholar
|
[30]
|
Zhang W, Sun Y, Timofejeva L, Chen C, Grossniklaus U, et al. 2006. Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1) encoding a putative bHLH transcription factor. Development 133:3085−95 doi: 10.1242/dev.02463
CrossRef Google Scholar
|
[31]
|
Xu J, Yang C, Yuan Z, Zhang D, Gondwe M, et al. 2010. The ABORTED MICROSPORES regulatory network is required for postmeiotic male reproductive development in Arabidopsis thaliana. The Plant cell 22:91−107 doi: 10.1105/tpc.109.071803
CrossRef Google Scholar
|
[32]
|
Zhu J, Chen H, Li H, Gao J, Jiang H, et al. 2008. Defective in tapetal development and function 1 is essential for anther development and tapetal function for microspore maturation in Arabidopsis. The Plant journal:for cell and molecular biology 55:266−77 doi: 10.1111/j.1365-313X.2008.03500.x
CrossRef Google Scholar
|
[33]
|
Wilson ZA, Morroll SM, Dawson J, Swarup R, Tighe PJ. 2001. The Arabidopsis MALE STERILITY1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. The Plant Journal 28:27−39 doi: 10.1046/j.1365-313X.2001.01125.x
CrossRef Google Scholar
|
[34]
|
Ito T, Shinozaki K. 2002. The MALE STERILITY1 gene of Arabidopsis, encoding a nuclear protein with a PHD-finger motif, is expressed in tapetal cells and is required for pollen maturation. Plant & Cell Physiology 43:1285−92 doi: 10.1093/pcp/pcf154
CrossRef Google Scholar
|
[35]
|
Zhang Z, Zhu J, Gao J, Wang C, Li H, et al. 2007. Transcription factor AtMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in Arabidopsis. The Plant Journal 52:528−38 doi: 10.1111/j.1365-313X.2007.03254.x
CrossRef Google Scholar
|
[36]
|
Zhu J, Zhang G, Chang Y, Li X, Yang J, et al. 2010. AtMYB103 is a crucial regulator of several pathways affecting Arabidopsis anther development. Science China. Life Sciences 53:1112−22 doi: 10.1007/s11427-010-4060-y
CrossRef Google Scholar
|
[37]
|
Vizcay-Barrena G, Wilson ZA. 2006. Altered tapetal PCD and pollen wall development in the Arabidopsis ms1 mutant. Journal of Experimental Botany 57:2709−17 doi: 10.1093/jxb/erl032
CrossRef Google Scholar
|
[38]
|
Zhu J, Lou Y, Xu X, Yang Z. 2011. A genetic pathway for tapetum development and function inArabidopsis. Journal of Integrative Plant Biology 53:892−900 doi: 10.1111/j.1744-7909.2011.01078.x
CrossRef Google Scholar
|
[39]
|
Millar AA, Gubler F. 2005. The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. The Plant Cell 17:705−21 doi: 10.1105/tpc.104.027920
CrossRef Google Scholar
|
[40]
|
Zhu E, You C, Wang S, Cui J, Niu B, et al. 2015. The DYT1-interacting proteins bHLH010, bHLH089 and bHLH091 are redundantly required for Arabidopsis anther development and transcriptome. The Plant Journal 83:976−90 doi: 10.1111/tpj.12942
CrossRef Google Scholar
|
[41]
|
Cui J, You C, Zhu E, Huang Q, Ma H, et al. 2016. Feedback regulation of DYT1 by Interactions with downstream bHLH factors promotes DYT1 nuclear localization and anther development. The Plant Cell 28:1078−93 doi: 10.1105/tpc.15.00986
CrossRef Google Scholar
|
[42]
|
Gu J, Zhu J, Yu Y, Teng X, Lou Y, et al. 2014. DYT1 directly regulates the expression of TDF1 for tapetum development and pollen wall formation in Arabidopsis. The Plant Journal 80:1005−13 doi: 10.1111/tpj.12694
CrossRef Google Scholar
|
[43]
|
Lou Y, Zhou H, Han Y, Zeng Q, Zhu J, et al. 2018. Positive regulation of AMS by TDF1 and the formation of a TDF1-AMS complex are required for anther development in Arabidopsis thaliana. The New Phytologist 217:378−91 doi: 10.1111/nph.14790
CrossRef Google Scholar
|
[44]
|
Lou Y, Xu X, Zhu J, Gu J, Blackmore S, et al. 2014. The tapetal AHL family protein TEK determines nexine formation in the pollen wall. Nature Communications 5:3855 doi: 10.1038/ncomms4855
CrossRef Google Scholar
|
[45]
|
Ferguson AC, Pearce S, Band LR, Yang C, Ferjentsikova I, et al. 2017. Biphasic regulation of the transcription factor ABORTED MICROSPORES (AMS) is essential for tapetum and pollen development in Arabidopsis. The New Phytologist 213:778−90 doi: 10.1111/nph.14200
CrossRef Google Scholar
|
[46]
|
Lu J, Xiong S, Yin W, Teng X, Lou Y, et al. 2020. MS1, a direct target of MS188, regulates the expression of key sporophytic pollen coat protein genes in Arabidopsis. Journal of Experimental Botany 71:4877−89 doi: 10.1093/jxb/eraa219
CrossRef Google Scholar
|
[47]
|
Xiong S, Lu J, Lou Y, Teng X, Gu J, et al. 2016. The transcription factors MS188 and AMS form a complex to activate the expression of CYP703A2 for sporopollenin biosynthesis in Arabidopsis thaliana. The Plant Journal 88:936−46 doi: 10.1111/tpj.13284
CrossRef Google Scholar
|
[48]
|
Wang K, Guo Z, Zhou W, Zhang C, Zhang Z, et al. 2018. The regulation of sporopollenin biosynthesis genes for rapid pollen wall formation. Plant Physiology 178:283−94 doi: 10.1104/pp.18.00219
CrossRef Google Scholar
|
[49]
|
Jung KH, Han MJ, Lee YS, Kim YW, Hwang I, et al. 2005. Rice Undeveloped Tapetum1 is a major regulator of early tapetum development. The Plant Cell 17:2705−22 doi: 10.1105/tpc.105.034090
CrossRef Google Scholar
|
[50]
|
Li N, Zhang D, Liu H, Yin C, Li X, et al. 2006. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. The Plant Cell 18:2999−3014 doi: 10.1105/tpc.106.044107
CrossRef Google Scholar
|
[51]
|
Zhang S, Fang Z, Zhu J, Gao J, Yang Z. 2010. OsMYB103 is required for rice anther development by regulating tapetum development and exine formation. Chinese Science Bulletin 55:3288−97 doi: 10.1007/s11434-010-4087-2
CrossRef Google Scholar
|
[52]
|
Li H, Yuan Z, Vizcay-Barrena G, Yang C, Liang W, et al. 2011. PERSISTENT TAPETAL CELL1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in rice. Plant Physiology 156:615−30 doi: 10.1104/pp.111.175760
CrossRef Google Scholar
|
[53]
|
Cai C, Zhu J, Lou Y, Guo Z, Xiong S, et al. 2015. The functional analysis of OsTDF1 reveals a conserved genetic pathway for tapetal development between rice and Arabidopsis. Science Bulletin 60:1073−82 doi: 10.1007/s11434-015-0810-3
CrossRef Google Scholar
|
[54]
|
Zhang D, Liang W, Yuan Z, Li N, Shi J, et al. 2008. Tapetum degeneration retardation is critical for aliphatic metabolism and gene regulation during rice pollen development. Molecular plant 1:599−610 doi: 10.1093/mp/ssn028
CrossRef Google Scholar
|
[55]
|
Pan X, Yan W, Chang Z, Xu Y, Luo M, et al. 2020. OsMYB80 regulates anther development and pollen fertility by targeting multiple biological pathways. Plant and Cell Physiology 61:988−1004 doi: 10.1093/pcp/pcaa025
CrossRef Google Scholar
|
[56]
|
Han Y, Zhou S, Fan J, Zhou L, Shi Q, et al. 2021. OsMS188 is a key regulator of tapetum development and sporopollenin synthesis in rice. Rice 14:4 doi: 10.1186/s12284-020-00451-y
CrossRef Google Scholar
|
[57]
|
Jiang Y, An X, Li Z, Yan T, Zhu T, et al. 2021. CRISPR/Cas9-based discovery of maize transcription factors regulating male sterility and their functional conservation in plants. Plant Biotechnology Journal 19:1769−84 doi: 10.1111/pbi.13590
CrossRef Google Scholar
|
[58]
|
An X, Ma B, Duan M, Dong Z, Liu R, et al. 2020. Molecular regulation of ZmMs7 required for maize male fertility and development of a dominant male-sterility system in multiple species. PNAS 117:23499−509 doi: 10.1073/pnas.2010255117
CrossRef Google Scholar
|
[59]
|
Zhang D, Wu S, An X, Xie K, Dong Z, et al. 2018. Construction of a multicontrol sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. Plant Biotechnology Journal 16:459−71 doi: 10.1111/pbi.12786
CrossRef Google Scholar
|
[60]
|
Nan G, Zhai J, Arikit S, Morrow D, Fernandes J, et al. 2017. MS23, a master basic helix-loop-helix factor, regulates the specification and development of the tapetum in maize. Development 144:163−72 doi: 10.1242/dev.140673
CrossRef Google Scholar
|
[61]
|
Albertsen MC, Fox T, Leonard A, Li B, Loveland B, et al. 2016. Patent No. US 2016/0024520
|
[62]
|
Moon J, Skibbe D, Timofejeva L, Wang CJR, Kelliher T, et al. 2013. Regulation of cell divisions and differentiation by MALE STERILITY32 is required for anther development in maize. The Plant Journal 76:592−602 doi: 10.1111/tpj.12318
CrossRef Google Scholar
|
[63]
|
Niu N, Liang W, Yang X, Jin W, Wilson ZA, et al. 2013. EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nature Communications 4:1445 doi: 10.1038/ncomms2396
CrossRef Google Scholar
|
[64]
|
Ji C, Li H, Chen L, Xie M, Wang F, et al. 2013. A novel rice bHLH transcription factor, DTD, acts coordinately with TDR in controlling tapetum function and pollen development. Molecular Plant 6:1715−8 doi: 10.1093/mp/sst046
CrossRef Google Scholar
|
[65]
|
Fu Z, Yu J, Cheng X, Zong X, Xu J, et al. 2014. The rice basic helix-loop-helix transcription factor TDR INTERACTING PROTEIN2 is a central switch in early anther development. The Plant Cell 26:1512−24 doi: 10.1105/tpc.114.123745
CrossRef Google Scholar
|
[66]
|
Ko SS, Li MJ, Sun-Ben Ku M, Ho YC, Lin YJ, et al. 2014. The bHLH142 transcription factor coordinates with TDR1 to modulate the expression of EAT1 and regulate pollen development in rice. The Plant Cell 26:2486−504 doi: 10.1105/tpc.114.126292
CrossRef Google Scholar
|
[67]
|
Cheng Y, Dai X, Zhao Y. 2006. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes & Development 20:1790−99 doi: 10.1101/gad.1415106
CrossRef Google Scholar
|
[68]
|
Yao X, Tian L, Yang J, Zhao Y, Zhu Y, et al. 2018. Auxin production in diploid microsporocytes is necessary and sufficient for early stages of pollen development. PLoS Genetics 14:e1007397 doi: 10.1371/journal.pgen.1007397
CrossRef Google Scholar
|
[69]
|
Zheng Y, Wang D, Ye S, Chen W, Li G, et al. 2021. Auxin guides germ-cell specification in Arabidopsis anthers. PNAS 118:e2101492118 doi: 10.1073/pnas.2101492118
CrossRef Google Scholar
|
[70]
|
Yang J, Tian L, Sun M, Huang X, Zhu J, et al. 2013. AUXIN RESPONSE FACTOR17 is essential for pollen wall pattern formation in Arabidopsis. Plant Physiology 162:720−31 doi: 10.1104/pp.113.214940
CrossRef Google Scholar
|
[71]
|
Wang B, Xue J, Yu Y, Liu S, Zhang J, et al. 2017. Fine regulation of ARF17 for anther development and pollen formation. BMC Plant Biology 17:243 doi: 10.1186/s12870-017-1185-1
CrossRef Google Scholar
|
[72]
|
Xu X, Wang B, Feng Y, Xue J, Qian X, et al. 2019. AUXIN RESPONSE FACTOR17 directly regulates MYB108 for anther dehiscence. Plant Physiology 181:645−55 doi: 10.1104/pp.19.00576
CrossRef Google Scholar
|
[73]
|
Ye Q, Zhu W, Li L, Zhang S, Yin Y, et al. 2010. Brassinosteroids control male fertility by regulating the expression of key genes involved in Arabidopsis anther and pollen development. PNAS 107:6100−5 doi: 10.1073/pnas.0912333107
CrossRef Google Scholar
|
[74]
|
Chen W, Lv M, Wang Y, Wang P, Cui Y, et al. 2019. BES1 is activated by EMS1-TPD1-SERK1/2-mediated signaling to control tapetum development in Arabidopsis thaliana. Nature Communications 10:4164 doi: 10.1038/s41467-019-12118-4
CrossRef Google Scholar
|
[75]
|
Aya K, Ueguchi-Tanaka M, Kondo M, Hamada K, Yano K, et al. 2009. Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. The Plant Cell 21:1453−72 doi: 10.1105/tpc.108.062935
CrossRef Google Scholar
|
[76]
|
Sakata T, Oda S, Tsunaga Y, Shomura H, Kawagishi-Kobayashi M, et al. 2014. Reduction of gibberellin by low temperature disrupts pollen development in rice. Plant Physiology 164:2011−9 doi: 10.1104/pp.113.234401
CrossRef Google Scholar
|
[77]
|
Plackett ARG, Ferguson AC, Powers SJ, Wanchoo-Kohli A, Phillips AL, et al. 2014. DELLA activity is required for successful pollen development in the Columbia ecotype of Arabidopsis. New Phytologist 201:825−36 doi: 10.1111/nph.12571
CrossRef Google Scholar
|
[78]
|
Jin Y, Song X, Chang H, Zhao Y, Cao C, et al. 2021. The GA-DELLA-OsMS188 module controls male reproductive development in rice. New phytologist 233:2629−42 doi: 10.1111/nph.17939
CrossRef Google Scholar
|
[79]
|
Clément C, Laporte P, Audran JC. 1998. The loculus content and tapetum during pollen development in Lilium. Sexual Plant Reproduction 11:94−106 doi: 10.1007/s004970050125
CrossRef Google Scholar
|
[80]
|
Clément C, Audran JC. 1995. Anther wall layers control pollen sugar nutrition in Lilium. Protoplasma 187:172−81 doi: 10.1007/BF01280246
CrossRef Google Scholar
|
[81]
|
Roitsch T, González MC. 2004. Function and regulation of plant invertases: sweet sensations. Trends in Plant Science 9:606−13 doi: 10.1016/j.tplants.2004.10.009
CrossRef Google Scholar
|
[82]
|
Goetz M, Godt DE, Guivarc'h A, Kahmann U, Chriqui D, et al. 2001. Induction of male sterility in plants by metabolic engineering of the carbohydrate supply. PNAS 98:6522−27 doi: 10.1073/pnas.091097998
CrossRef Google Scholar
|
[83]
|
Engelke T, Hirsche J, Roitsch T. 2010. Anther-specific carbohydrate supply and restoration of metabolically engineered male sterility. Journal of Experimental Botany 61:2693−706 doi: 10.1093/jxb/erq105
CrossRef Google Scholar
|
[84]
|
Hirsche J, Engelke T, Völler D, Götz M, Roitsch T. 2009. Interspecies compatibility of the anther specific cell wall invertase promoters from Arabidopsis and tobacco for generating male sterile plants. Theoretical and Applied Genetics 118:235−45 doi: 10.1007/s00122-008-0892-2
CrossRef Google Scholar
|
[85]
|
Ranwala AP, Miller WB. 1998. Sucrose-cleaving enzymes and carbohydrate pools in Lilium longiflorum floral organs. Physiologia Plantarum 103:541−50 doi: 10.1034/j.1399-3054.1998.1030413.x
CrossRef Google Scholar
|
[86]
|
Zhang H, Liang W, Yang X, Luo X, Jiang N, et al. 2010. Carbon starved anther encodes a MYB domain protein that regulates sugar partitioning required for rice pollen development. The Plant Cell 22:672−89 doi: 10.1105/tpc.109.073668
CrossRef Google Scholar
|
[87]
|
Li J, Huang Y, Tan H, Yang X, Tian L, et al. 2015. An endoplasmic reticulum magnesium transporter is essential for pollen development in Arabidopsis. Plant Science 231:212−20 doi: 10.1016/j.plantsci.2014.12.008
CrossRef Google Scholar
|
[88]
|
Li L, Tutone AF, Drummond RSM, Gardner RC, Luan S. 2001. A novel family of magnesium transport genes in Arabidopsis. The Plant Cell 13:2761−75 doi: 10.1105/tpc.010352
CrossRef Google Scholar
|
[89]
|
Li L, Sokolov LN, Yang Y, Li D, Ting J, et al. 2008. A mitochondrial magnesium transporter functions in Arabidopsis pollen development. Molecular Plant 1:675−85 doi: 10.1093/mp/ssn031
CrossRef Google Scholar
|
[90]
|
Chen J, Li L, Liu Z, Yuan Y, Guo L, et al. 2009. Magnesium transporter AtMGT9 is essential for pollen development in Arabidopsis. Cell Research 19:887−98 doi: 10.1038/cr.2009.58
CrossRef Google Scholar
|
[91]
|
Xu X, Wang B, Lou Y, Han W, Lu J, et al. 2015. Magnesium transporter 5 plays an important role in Mg transport for male gametophyte development in Arabidopsis. The Plant Journal 84:925−36 doi: 10.1111/tpj.13054
CrossRef Google Scholar
|
[92]
|
Xu X, Qian X, Wang K, Yu Y, Guo Y, et al. 2020. Slowing development facilitates Arabidopsis mgt mutants to accumulate enough magnesium for pollen formation and fertility restoration. Frontiers in Plant Science 11:621338 doi: 10.3389/fpls.2020.621338
CrossRef Google Scholar
|
[93]
|
Micheli F. 2001. Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Science 6:414−19 doi: 10.1016/s1360-1385(01)02045-3
CrossRef Google Scholar
|
[94]
|
Ridley BL, O'Neill MA, Mohnen D. 2001. Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57:929−67 doi: 10.1016/S0031-9422(01)00113-3
CrossRef Google Scholar
|
[95]
|
Wikiera A, Mika M. 2013. Structure and properties of pectin. Postepy biochemii 59:89−94
Google Scholar
|
[96]
|
Preuss D, Rhee SY, Davis RW. 1994. Tetrad analysis possible in Arabidopsis with mutation of the QUARTET (QRT) genes. Science 264:1458−60 doi: 10.1126/science.8197459
CrossRef Google Scholar
|
[97]
|
Rhee SY, Somerville CR. 1998. Tetrad pollen formation in quartet mutants of Arabidopsis thaliana is associated with persistence of pectic polysaccharides of the pollen mother cell wall. The Plant Journal 15:79−88 doi: 10.1046/j.1365-313X.1998.00183.x
CrossRef Google Scholar
|
[98]
|
Rhee SY, Osborne E, Poindexter PD, Somerville CR. 2003. Microspore separation in the quartet 3 mutants of Arabidopsis is impaired by a defect in a developmentally regulated polygalacturonase required for pollen mother cell wall degradation. Plant Physiology 133:1170−80 doi: 10.1104/pp.103.028266
CrossRef Google Scholar
|
[99]
|
Francis KE, Lam SY, Copenhaver GP. 2006. Separation of Arabidopsis pollen tetrads is regulated by QUARTET1, a pectin methylesterase gene. Plant Physiology 142:1004−13 doi: 10.1104/pp.106.085274
CrossRef Google Scholar
|
[100]
|
Ogawa M, Kay P, Wilson S, Swain SM. 2009. ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1), ADPG2, and QUARTET2 are polygalacturonases required for cell separation during reproductive development in Arabidopsis. The Plant Cell 21:216−33 doi: 10.1105/tpc.108.063768
CrossRef Google Scholar
|
[101]
|
Dong X, Hong Z, Sivaramakrishnan M, Mahfouz M, Verma DPS. 2005. Callose synthase (CalS5) is required for exine formation during microgametogenesis and for pollen viability in Arabidopsis. The Plant Journal 42:315−28 doi: 10.1111/j.1365-313X.2005.02379.x
CrossRef Google Scholar
|
[102]
|
Nishikawa SI, Zinkl GM, Swanson RJ, Maruyama D, Preuss D. 2005. Callose (β-1,3 glucan) is essential for Arabidopsis pollen wall patterning, but not tube growth. BMC Plant Biology 5:22 doi: 10.1186/1471-2229-5-22
CrossRef Google Scholar
|
[103]
|
Xiong S, Zeng Q, Hou J, Hou L, Zhu J, et al. 2020. The temporal regulation of TEK contributes to pollen wall exine patterning. PLoS Genetics 16:e1008807 doi: 10.1371/journal.pgen.1008807
CrossRef Google Scholar
|
[104]
|
Frankel R, Izhar S, Nitsan J. 1969. Timing of callase activity and cytoplasmic male sterility inPetunia. Biochemical Genetics 3:451−55 doi: 10.1007/BF00485605
CrossRef Google Scholar
|
[105]
|
Stieglitz H, Stern H. 1973. Regulation of β-1,3-glucanase activity in developing anthers of Lilium. Developmental Biology 34:169−73 doi: 10.1016/0012-1606(73)90347-3
CrossRef Google Scholar
|
[106]
|
Stieglitz H. 1977. Role of β-1,3-glucanase in postmeiotic microspore release. Developmental Biology 57:87−97 doi: 10.1016/0012-1606(77)90356-6
CrossRef Google Scholar
|
[107]
|
Hird DL, Worrall D, Hodge R, Smartt S, Paul W, Scott R. 1993. The anther-specific protein encoded by the Brassica napus and Arabidopsis thaliana A6 gene displays similarity to β-1,3-glucanases. The Plant Journal 4:1023−33 doi: 10.1046/j.1365-313X.1993.04061023.x
CrossRef Google Scholar
|
[108]
|
Xu J, Ding Z, Vizcay-Barrena G, Shi J, Liang W, et al. 2014. ABORTED MICROSPORES acts as a master regulator of pollen wall formation in Arabidopsis. The Plant Cell 26:1544−56 doi: 10.1105/tpc.114.122986
CrossRef Google Scholar
|
[109]
|
Dobritsa AA, Geanconteri A, Shrestha J, Carlson A, Kooyers N, et al. 2011. A large-scale genetic screen in Arabidopsis to identify genes involved in pollen exine production. Plant Physiology 157:947−70 doi: 10.1104/pp.111.179523
CrossRef Google Scholar
|
[110]
|
Suzuki T, Narciso JO, Zeng W, van de Meene A, Yasutomi M, et al. 2017. KNS4/UPEX1: A type II arabinogalactan β-(1,3)-galactosyltransferase required for pollen exine development. Plant Physiology 173:183−205 doi: 10.1104/pp.16.01385
CrossRef Google Scholar
|
[111]
|
Wang K, Yu Y, Jia X, Zhou S, Zhang F, et al. 2021. Delayed callose degradation restores the fertility of multiple P/TGMS lines in Arabidopsis. Journal of Integrative Plant Biology 64:717−30 doi: 10.1111/jipb.13205
CrossRef Google Scholar
|
[112]
|
de Azevedo Souza C, Kim SS, Koch S, Kienow L, Schneider K, et al. 2009. A novel fatty Acyl-CoA Synthetase is required for pollen development and sporopollenin biosynthesis in Arabidopsis. The Plant Cell 21:507−25 doi: 10.1105/tpc.108.062513
CrossRef Google Scholar
|
[113]
|
Morant M, Jørgensen K, Schaller H, Pinot F, Møller BL, et al. 2007. CYP703 is an ancient cytochrome P450 in land plants catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen. The Plant Cell 19:1473−87 doi: 10.1105/tpc.106.045948
CrossRef Google Scholar
|
[114]
|
Dobritsa AA, Shrestha J, Morant M, Pinot F, Matsuno M, et al. 2009. CYP704B1 is a long-chain fatty acid ω-hydroxylase essential for sporopollenin synthesis in pollen of Arabidopsis. Plant Physiology 151:574−89 doi: 10.1104/pp.109.144469
CrossRef Google Scholar
|
[115]
|
Aarts MG, Hodge R, Kalantidis K, Florack D, Wilson ZA, et al. 1997. The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes. The Plant Journal 12:615−23 doi: 10.1046/j.1365-313X.1997.00615.x
CrossRef Google Scholar
|
[116]
|
Chen W, Yu X, Zhang K, Shi J, De Oliveira S, et al. 2011. Male Sterile2 encodes a plastid-localized fatty acyl carrier protein reductase required for pollen exine development in Arabidopsis. Plant Physiology 157:842−53 doi: 10.1104/pp.111.181693
CrossRef Google Scholar
|
[117]
|
Grienenberger E, Kim SS, Lallemand B, Geoffroy P, Heintz D, et al. 2010. Analysis of TETRAKETIDE α-PYRONE REDUCTASE function in Arabidopsis thaliana reveals a previously unknown, but conserved, biochemical pathway in sporopollenin monomer biosynthesis. The Plant Cell 22:4067−83 doi: 10.1105/tpc.110.080036
CrossRef Google Scholar
|
[118]
|
Kim SS, Grienenberger E, Lallemand B, Colpitts CC, Kim SY, et al. 2010. LAP6/POLYKETIDE SYNTHASE A and LAP5/POLYKETIDE SYNTHASE B encode hydroxyalkyl alpha-pyrone synthases required for pollen development and sporopollenin biosynthesis in Arabidopsis thaliana. The Plant Cell 22:4045−66 doi: 10.1105/tpc.110.080028
CrossRef Google Scholar
|
[119]
|
Dobritsa AA, Lei Z, Nishikawa SI, Urbanczyk-Wochniak E, Huhman DV, et al. 2010. LAP5 and LAP6 encode anther-specific proteins with similarity to chalcone synthase essential for pollen exine development in Arabidopsis. Plant physiology 153:937−55 doi: 10.1104/pp.110.157446
CrossRef Google Scholar
|
[120]
|
Quilichini TD, Friedmann MC, Samuels AL, Douglas CJ. 2010. ATP-binding cassette transporter G26 is required for male fertility and pollen exine formation in Arabidopsis. Plant Physiology 154:678−90 doi: 10.1104/pp.110.161968
CrossRef Google Scholar
|
[121]
|
Choi H, Jin JY, Choi S, Hwang JU, Kim YY, et al. 2011. An ABCG/WBC-type ABC transporter is essential for transport of sporopollenin precursors for exine formation in developing pollen. The Plant Journal 65:181−93 doi: 10.1111/j.1365-313X.2010.04412.x
CrossRef Google Scholar
|
[122]
|
Dou XY, Yang KZ, Zhang Y, Wang W, Liu XL, et al. 2011. WBC27, an adenosine tri-phosphate-binding cassette protein, controls pollen wall formation and patterning in Arabidopsis. Journal of Integrative Plant Biology 53:74−88 doi: 10.1111/j.1744-7909.2010.01010.x
CrossRef Google Scholar
|
[123]
|
Qin P, Tu B, Wang Y, Deng L, Quilichini TD, et al. 2013. ABCG15 encodes an ABC transporter protein, and is essential for post-meiotic anther and pollen exine development in rice. Plant and Cell Physiology 54:138−54 doi: 10.1093/pcp/pcs162
CrossRef Google Scholar
|
[124]
|
Osthoff KS, Wiermann R. 1987. Phenols as integrated compounds of sporopollenin from pinus pollen. Journal of Plant Physiology 131:5−15 doi: 10.1016/S0176-1617(87)80262-6
CrossRef Google Scholar
|
[125]
|
Domínguez E, Mercado JA, Quesada MA, Heredia A. 1999. Pollen sporopollenin: degradation and structural elucidation. Sexual Plant Reproduction 12:171−78 doi: 10.1007/s004970050189
CrossRef Google Scholar
|
[126]
|
Li FS, Phyo P, Jacobowitz J, Hong M, Weng JK. 2019. The molecular structure of plant sporopollenin. Nature Plants 5:41−6 doi: 10.1038/s41477-018-0330-7
CrossRef Google Scholar
|
[127]
|
Mikhael A, Jurcic K, Schneider C, Karr D, Fisher GL, et al. 2020. Demystifying and unravelling the molecular structure of the biopolymer sporopollenin. Rapid Communications in Mass Spectrometry 34:e8740 doi: 10.1002/rcm.8740
CrossRef Google Scholar
|
[128]
|
Xue J, Zhang B, Zhan H, Lv Y, Jia X, et al. 2020. Phenylpropanoid derivatives are essential components of sporopollenin in vascular plants. Molecular Plant 13:1644−53 doi: 10.1016/j.molp.2020.08.005
CrossRef Google Scholar
|
[129]
|
Rozema J, Broekman RA, Blokker P, Meijkamp BB, de Bakker N, et al. 2001. UV-B absorbance and UV-B absorbing compounds (para-coumaric acid) in pollen and sporopollenin: the perspective to track historic UV-B levels. Journal of Photochemistry and Photobiology B: Biology 62:108−17 doi: 10.1016/S1011-1344(01)00155-5
CrossRef Google Scholar
|
[130]
|
Jia Q, Zhu J, Xu X, Lou Y, Zhang Z, et al. 2015. Arabidopsis AT-hook protein TEK positively regulates the expression of arabinogalactan proteins for nexine formation. Molecular Plant 8:251−60 doi: 10.1016/j.molp.2014.10.001
CrossRef Google Scholar
|
[131]
|
Preuss D, Lemieux B, Yen G, Davis RW. 1993. A conditional sterile mutation eliminates surface components from Arabidopsis pollen and disrupts cell signaling during fertilization. Genes & Development 7:974−85 doi: 10.1101/gad.7.6.974
CrossRef Google Scholar
|
[132]
|
Hülskamp M, Kopczak SD, Horejsi TF, Kihl BK, Pruitt RE. 1995. Identification of genes required for pollen-stigma recognition inArabidopsis thaliana. The Plant Journal 8:703−14 doi: 10.1046/j.1365-313X.1995.08050703.x
CrossRef Google Scholar
|
[133]
|
Piffanelli P, Murphy DJ. 1998. Novel organelles and targeting mechanisms in the anther tapetum. Trends in Plant Science 3:250−52 doi: 10.1016/S1360-1385(98)01260-6
CrossRef Google Scholar
|
[134]
|
Pacini E, Hesse M. 2002. Types of pollen dispersal units in orchids, and their consequences for germination and fertilization. Annals of Botany 89:653−64 doi: 10.1093/aob/mcf138
CrossRef Google Scholar
|
[135]
|
Blackmore S, Wortley AH, Skvarla JJ, Rowley JR. 2007. Pollen wall development in flowering plants. New Phytologist 174:483−98 doi: 10.1111/j.1469-8137.2007.02060.x
CrossRef Google Scholar
|
[136]
|
Wheeler MJ, Franklin-Tong VE, Franklin FCH. 2001. The molecular and genetic basis of pollen-pistil interactions. New Phytologist 151:565−84 doi: 10.1046/j.0028-646x.2001.00229.x
CrossRef Google Scholar
|
[137]
|
Jia X, Xue J, Zhang F, Yao C, Shen S, et al. 2021. A dye combination for the staining of pollen coat and pollen wall. Plant Reproduction 34:91−101 doi: 10.1007/s00497-021-00412-5
CrossRef Google Scholar
|
[138]
|
Piffanelli P, Ross JHE, Murphy DJ. 1997. Intra- and extracellular lipid composition and associated gene expression patterns during pollen development in Brassica napus. The Plant Journal 11:549−62 doi: 10.1046/j.1365-313X.1997.11030549.x
CrossRef Google Scholar
|
[139]
|
Xue Z, Xu X, Zhou Y, Wang X, Zhang Y, et al. 2018. Deficiency of a triterpene pathway results in humidity-sensitive genic male sterility in rice. Nature Communications 9:604 doi: 10.1038/s41467-018-03048-8
CrossRef Google Scholar
|
[140]
|
Mayfield JA, Fiebig A, Johnstone SE, Preuss D. 2001. Gene families from the Arabidopsis thaliana pollen coat proteome. Science 292:2482−85 doi: 10.1126/science.1060972
CrossRef Google Scholar
|
[141]
|
Mayfield JA, Preuss D. 2000. Rapid initiation of Arabidopsis pollination requires the oleosin-domain protein GRP17. Nature Cell Biology 2:128−30 doi: 10.1038/35000084
CrossRef Google Scholar
|
[142]
|
Updegraff EP, Zhao F, Preuss D. 2009. The extracellular lipase EXL4 is required for efficient hydration of Arabidopsis pollen. Sexual Plant Reproduction 22:197−204 doi: 10.1007/s00497-009-0104-5
CrossRef Google Scholar
|
[143]
|
Jessen D, Olbrich A, Knüfer J, Krüger A, Hoppert M, et al. 2011. Combined activity of LACS1 and LACS4 is required for proper pollen coat formation in Arabidopsis. The Plant Journal 68:715−26 doi: 10.1111/j.1365-313X.2011.04722.x
CrossRef Google Scholar
|
[144]
|
Koornneef M, Hanhart CJ, Thiel F. 1989. A genetic and phenotypic description of Eceriferum (cer) mutants in Arabidopsis thaliana. Journal of Heredity 80:118−22 doi: 10.1093/oxfordjournals.jhered.a110808
CrossRef Google Scholar
|
[145]
|
Hannoufa A, Negruk V, Eisner G, Lemieux B. 1996. The CER3 gene of Arabidopsis thaliana is expressed in leaves, stems, roots, flowers and apical meristems. The Plant Journal 10:459−67 doi: 10.1046/j.1365-313X.1996.10030459.x
CrossRef Google Scholar
|
[146]
|
Zhang Z, Zhan H, Lu J, Xiong S, Yang N, et al. 2021. Tapetal 3-Ketoacyl-Coenzyme a synthases are involved in pollen coat lipid accumulation for pollen-stigma interaction in Arabidopsis. Frontiers in Plant Science 12:770311 doi: 10.3389/fpls.2021.770311
CrossRef Google Scholar
|
[147]
|
Joubès J, Raffaele S, Bourdenx B, Garcia C, Laroche-Traineau J, et al. 2008. The VLCFA elongase gene family in Arabidopsis thaliana: phylogenetic analysis, 3D modelling and expression profiling. Plant molecular biology 67:547−66 doi: 10.1007/s11103-008-9339-z
CrossRef Google Scholar
|
[148]
|
Haslam TM, Kunst L. 2013. Extending the story of very-long-chain fatty acid elongation. Plant Science 210:93−107 doi: 10.1016/j.plantsci.2013.05.008
CrossRef Google Scholar
|
[149]
|
Ariizumi T, Hatakeyama K, Hinata K, Sato S, Kato T, et al. 2003. A novel male-sterile mutant ofArabidopsis thaliana, f aceless pollen-1, produces pollen with a smooth surface and an acetolysis-sensitive exine. Plant Molecular Biology 53:107−16 doi: 10.1023/B:PLAN.0000009269.97773.70
CrossRef Google Scholar
|
[150]
|
Chen XB, Goodwin SM, Boroff VL, Liu XL, Jenks MA. 2003. Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production. The Plant Cell 15:1170−85 doi: 10.1105/tpc.010926
CrossRef Google Scholar
|
[151]
|
Rowland O, Lee R, Franke R, Schreiber L, Kunst L. 2007. The CER3 wax biosynthetic gene from Arabidopsis thaliana is allelic to WAX2/YRE/FLP1. FEBS letters 581:3538−44 doi: 10.1016/j.febslet.2007.06.065
CrossRef Google Scholar
|
[152]
|
Kurata T, Kawabata-Awai C, Sakuradani E, Shimizu S, Okada K, Wada T. 2003. The YORE-YORE gene regulates multiple aspects of epidermal cell differentiation in Arabidopsis. The Plant journal:for cell and molecular biology 36:55−66 doi: 10.1046/j.1365-313X.2003.01854.x
CrossRef Google Scholar
|
[153]
|
Bernard A, Domergue F, Pascal S, Jetter R, Renne C, et al. 2012. Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex. The Plant cell 24:3106−18 doi: 10.1105/tpc.112.099796
CrossRef Google Scholar
|
[154]
|
Ishiguro S, Nishimori Y, Yamada M, Saito H, Suzuki T, et al. 2010. The Arabidopsis FLAKY POLLEN1 gene encodes a 3-hydroxy-3-methylglutaryl-coenzyme A synthase required for development of tapetum-specific organelles and fertility of pollen grains. Plant & Cell Physiology 51:896−911 doi: 10.1093/pcp/pcq068
CrossRef Google Scholar
|
[155]
|
Suzuki T, Tsunekawa S, Koizuka C, Yamamoto K, Imamura J, et al. 2013. Development and disintegration of tapetum-specific lipid-accumulating organelles, elaioplasts and tapetosomes, in Arabidopsis thaliana and Brassica napus. Plant Science 207:25−36 doi: 10.1016/j.plantsci.2013.02.008
CrossRef Google Scholar
|
[156]
|
van der Veen JH, Wirtz P. 1968. EMS-induced genic male sterility in Arabidopsis thaliana: a model selection experiment. Euphytica 17:371−77 doi: 10.1007/BF00056238
CrossRef Google Scholar
|
[157]
|
Wilson Z, Vizcay Barrena G, Yang C. 2007. Arabidopsis male sterility1 regulates programmed cell death in the anther tapetum and pollen wall development. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 146:S203 doi: 10.1016/j.cbpa.2007.01.451
CrossRef Google Scholar
|
[158]
|
Rejón JD, Delalande F, Schaeffer-Reiss C, Alché JD, Rodríguez-García MI, et al. 2016. The pollen coat proteome: at the cutting edge of plant reproduction. Proteomes 4:5 doi: 10.3390/proteomes4010005
CrossRef Google Scholar
|
[159]
|
Doughty J, Dixon S, Hiscock SJ, Willis AC, Parkin IAP, Dickinson HG. 1998. PCP-A1, a defensin-like Brassica pollen coat protein that binds the S locus glycoprotein, is the product of gametophytic gene expression. The Plant Cell 10:1333−47 doi: 10.1105/tpc.10.8.1333
CrossRef Google Scholar
|
[160]
|
Takayama S, Shiba H, Iwano M, Asano K, Hara M, et al. 2000. Isolation and characterization of pollen coat proteins of Brassica campestris that interact with S locus-related glycoprotein 1 involved in pollen-stigma adhesion. PNAS 97:3765−70 doi: 10.1073/pnas.97.7.3765
CrossRef Google Scholar
|
[161]
|
Nasrallah JB, Nasrallah ME. 2014. S-locus receptor kinase signalling. Biochemical Society Transactions 42:313−9 doi: 10.1042/BST20130222
CrossRef Google Scholar
|
[162]
|
Zhan H, Xiong H, Wang S, Yang Z. 2018. Anther endothecium-derived very-long-chain fatty acids facilitate pollen hydration in Arabidopsis. Molecular Plant 11:1101−4 doi: 10.1016/j.molp.2018.05.002
CrossRef Google Scholar
|
[163]
|
Haslam TM, Mañas-Fernández A, Zhao LF, Kunst L. 2012. Arabidopsis ECERIFERUM2 is a component of the fatty acid elongation machinery required for fatty acid extension to exceptional lengths. Plant Physiology 160:1164−74 doi: 10.1104/pp.112.201640
CrossRef Google Scholar
|
[164]
|
Haslam TM, Haslam R, Thoraval D, Pascal S, Delude C, et al. 2015. ECERIFERUM2-LIKE proteins have unique biochemical and physiological functions in very-long-chain fatty acid elongation. Plant Physiology 167:682−92 doi: 10.1104/pp.114.253195
CrossRef Google Scholar
|
[165]
|
Haslam TM, Gerelle WK, Graham SW, Kunst L. 2017. The unique role of the ECERIFERUM2-LIKE clade of the BAHD acyltransferase superfamily in cuticular wax metabolism. Plants-Basel 6:23 doi: 10.3390/plants6020023
CrossRef Google Scholar
|
[166]
|
Xia Y, Nikolau BJ, Schnable PS. 1997. Developmental and hormonal regulation of the Arabidopsis CER2 gene that codes for a nuclear-localized protein required for the normal accumulation of cuticular waxes. Plant Physiology 115:925−37 doi: 10.1104/pp.115.3.925
CrossRef Google Scholar
|
[167]
|
Fiebig A, Mayfield JA, Miley NL, Chau S, Fischer RL, et al. 2000. Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems. The Plant Cell 12:2001−8 doi: 10.1105/tpc.12.10.2001
CrossRef Google Scholar
|
[168]
|
Doughty J, Hedderson F, McCubbin A, Dickinson H. 1993. Interaction between a coating-borne peptide of the Brassica pollen grain and stigmatic S (self-incompatibility)-locus-specific glycoproteins. PNAS 90:467−71 doi: 10.1073/pnas.90.2.467
CrossRef Google Scholar
|
[169]
|
Wang L, Clarke LA, Eason RJ, Parker CC, Qi B, et al. 2017. PCP-B class pollen coat proteins are key regulators of the hydration checkpoint in Arabidopsis thaliana pollen-stigma interactions. New Phytologist 213:764−77 doi: 10.1111/nph.14162
CrossRef Google Scholar
|
[170]
|
Liu C, Shen L, Xiao Y, Vyshedsky D, Peng C, et al. 2021. Pollen PCP-B peptides unlock a stigma peptide-receptor kinase gating mechanism for pollination. Science 372:171−75 doi: 10.1126/science.abc6107
CrossRef Google Scholar
|
[171]
|
Wei LQ, Yan LF, Wang T. 2011. Deep sequencing on genome-wide scale reveals the unique composition and expression patterns of microRNAs in developing pollen of Oryza sativa. Genome Biology 12:R53 doi: 10.1186/gb-2011-12-6-r53
CrossRef Google Scholar
|
[172]
|
Chambers C, Shuai B. 2009. Profiling microRNA expression in Arabidopsis pollen using microRNA array and real-time PCR. BMC Plant Biology 9:87 doi: 10.1186/1471-2229-9-87
CrossRef Google Scholar
|
[173]
|
Tsuji H, Aya K, Ueguchi-Tanaka M, Shimada Y, Nakazono M, et al. 2006. GAMYB controls different sets of genes and is differentially regulated by microRNA in aleurone cells and anthers. The Plant Journal 47:427−44 doi: 10.1111/j.1365-313X.2006.02795.x
CrossRef Google Scholar
|
[174]
|
Achard P, Herr A, Baulcombe DC, Harberd NP. 2004. Modulation of floral development by a gibberellin-regulated microRNA. Development 131:3357−65 doi: 10.1242/dev.01206
CrossRef Google Scholar
|
[175]
|
Sun Y, Xiong X, Wang Q, Zhu L, Wang L, et al. 2021. Integrated analysis of small RNA, transcriptome, and degradome sequencing reveals the MiR156, MiR5488 and MiR399 are involved in the regulation of male sterility in PTGMS rice. International Journal of Molecular Sciences 22:2260 doi: 10.3390/ijms22052260
CrossRef Google Scholar
|
[176]
|
Wu S, Tan H, Hao X, Xie Z, Wang X, et al. 2019. Profiling miRNA expression in photo-thermo-sensitive male genic sterility line (PTGMS) PA64S under high and low temperature. Plant Signaling & Behavior 14:1679015 doi: 10.1080/15592324.2019.1679015
CrossRef Google Scholar
|
[177]
|
Li Z, An X, Zhu T, Yan T, Wu S, et al. 2019. Discovering and constructing ceRNA-miRNA-target gene regulatory networks during anther development in maize. International Journal of Molecular Sciences 20:3480 doi: 10.3390/ijms20143480
CrossRef Google Scholar
|
[178]
|
Omidvar V, Mohorianu I, Dalmay T, Fellner M. 2015. Identification of miRNAs with potential roles in regulation of anther development and male-sterility in 7B-1 male-sterile tomato mutant. BMC Genomics 16:878 doi: 10.1186/s12864-015-2077-0
CrossRef Google Scholar
|
[179]
|
Slotkin RK, Vaughn M, Borges F, Tanurdžić M, Becker JD, et al. 2009. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136:461−72 doi: 10.1016/j.cell.2008.12.038
CrossRef Google Scholar
|
[180]
|
Zhai J, Zhang H, Arikit S, Huang K, Nan G, et al. 2015. Spatiotemporally dynamic, cell-type-dependent premeiotic and meiotic phasiRNAs in maize anthers. PNAS 112:3146−51 doi: 10.1073/pnas.1418918112
CrossRef Google Scholar
|
[181]
|
Teng C, Zhang H, Hammond R, Huang K, Meyers BC, Walbot V. 2020. Dicer-like 5 deficiency confers temperature-sensitive male sterility in maize. Nature Communications 11:2912 doi: 10.1038/s41467-020-16634-6
CrossRef Google Scholar
|
[182]
|
Long J, Walker J, She W, Aldridge B, Gao H, et al. 2021. Nurse cell-derived small RNAs define paternal epigenetic inheritance in Arabidopsis. Science 373:eabh0556 doi: 10.1126/science.abh0556
CrossRef Google Scholar
|
[183]
|
Zhou X, Huang K, Teng C, Abdelgawad A, Batish M, et al. 2022. 24-nt phasiRNAs move from tapetal to meiotic cells in maize anthers. New Phytologist 235:488−501 doi: 10.1111/nph.18167
CrossRef Google Scholar
|