[1]
|
Yang W, Shi D, Chen Y. 2010. Female gametophyte development in flowering plants. Annual Review of Plant Biology 61:89−108 doi: 10.1146/annurev-arplant-042809-112203
CrossRef Google Scholar
|
[2]
|
Grossniklaus U. 2011. Plant germline development: a tale of cross-talk, signaling, and cellular interactions. Sexual Plant Reproduction 24:91−95 doi: 10.1007/s00497-011-0170-3
CrossRef Google Scholar
|
[3]
|
Pinto SC, Mendes MA, Coimbra S, Tucker MR. 2019. Revisiting the Female Germline and Its Expanding Toolbox. Trends in Plant Science 24:455−67 doi: 10.1016/j.tplants.2019.02.003
CrossRef Google Scholar
|
[4]
|
Yang W, Ye D, Xu J, Sundaresan V. 1999. The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes & Development 13:2108−17 doi: 10.1101/gad.13.16.2108
CrossRef Google Scholar
|
[5]
|
Wei B, Zhang J, Pang C, Yu H, Guo D, et al. 2015. The molecular mechanism of sporocyteless/nozzle in controlling Arabidopsis ovule development. Cell Research 25:121−34 doi: 10.1038/cr.2014.145
CrossRef Google Scholar
|
[6]
|
Chen G, Sun J, Liu M, Liu J, Yang W. 2014. SPOROCYTELESS is a novel embryophyte-specific transcription repressor that interacts with TPL and TCP proteins in Arabidopsis. Journal of Genetics and Genomics 41:617−25 doi: 10.1016/j.jgg.2014.08.009
CrossRef Google Scholar
|
[7]
|
Lieber D, Lora J, Schrempp S, Lenhard M, Laux T. 2011. Arabidopsis WIH1 and WIH2 genes act in the transition from somatic to reproductive cell fate. Current Biology 21:1009−17 doi: 10.1016/j.cub.2011.05.015
CrossRef Google Scholar
|
[8]
|
Cnops G, Neyt P, Raes J, Petrarulo M, Nelissen H, et al. 2006. The TORNADO1 and TORNADO2 genes function in several patterning processes during early leaf development in Arabidopsis thaliana. The Plant Cell 18:852−66 doi: 10.1105/tpc.105.040568
CrossRef Google Scholar
|
[9]
|
Luo Y, Shi D, Jia P, Bao Y, Li H, et al. 2022. Nucleolar histone deacetylases HDT1, HDT2, and HDT3 regulate plant reproductive development. Journal of Genetics and Genomics 49:30−39 doi: 10.1016/j.jgg.2021.10.002
CrossRef Google Scholar
|
[10]
|
Santner A, Calderon-Villalobos LIA, Estelle M. 2009. Plant hormones are versatile chemical regulators of plant growth. Nature Chemical Biology 5:301−7 doi: 10.1038/nchembio.165
CrossRef Google Scholar
|
[11]
|
Larsson E, Vivian-Smith A, Offringa R, Sundberg E. 2017. Auxin Homeostasis in Arabidopsis Ovules Is Anther-Dependent at Maturation and Changes Dynamically upon Fertilization. Frontiers in Plant Science 8:1735 doi: 10.3389/fpls.2017.01735
CrossRef Google Scholar
|
[12]
|
Swarup R, Bhosale R. 2019. Developmental Roles of AUX1/LAX Auxin Influx Carriers in Plants. Frontiers in Plant Science 10:1306 doi: 10.3389/fpls.2019.01306
CrossRef Google Scholar
|
[13]
|
Wang L, Liu Y, Aslam M, Jakada BH, Qin Y, Cai H. 2021. The Glycine-Rich Domain Protein GRDP2 Regulates Ovule Development via the Auxin Pathway in Arabidopsis. Frontiers in Plant Science 12:698487 doi: 10.3389/fpls.2021.698487
CrossRef Google Scholar
|
[14]
|
Ceccato L, Masiero S, Sinha Roy D, Bencivenga S, Roig-Villanova I, et al. 2013. Maternal control of PIN1 is required for female gametophyte development in Arabidopsis. PLoS One 8:e66148 doi: 10.1371/journal.pone.0066148
CrossRef Google Scholar
|
[15]
|
Pagnussat GC, Alandete-Saez M, Bowman JL, Sundaresan V. 2009. Auxin-dependent patterning and gamete specification in the Arabidopsis female gametophyte. Science 324:1684−9 doi: 10.1126/science.1167324
CrossRef Google Scholar
|
[16]
|
van Zanten M, Koini MA, Geyer R, Liu Y, Brambilla V, et al. 2011. Seed maturation in Arabidopsis thaliana is characterized by nuclear size reduction and increased chromatin condensation. PNAS 108:20219−24 doi: 10.1073/pnas.1117726108
CrossRef Google Scholar
|
[17]
|
Wang H, Dittmer TA, Richards EJ. 2013. Arabidopsis CROWDED NUCLEI (CRWN) proteins are required for nuclear size control and heterochromatin organization. BMC Plant Biology 13:200 doi: 10.1186/1471-2229-13-200
CrossRef Google Scholar
|
[18]
|
Jiang T, Zheng B. 2022. Epigenetic regulation of megaspore mother cell formation. Frontiers in Plant Science 12:826871 doi: 10.3389/fpls.2021.826871
CrossRef Google Scholar
|
[19]
|
She W, Grimanelli D, Rutowicz K, Whitehead MW, Puzio M, et al. 2013. Chromatin reprogramming during the somatic-to-reproductive cell fate transition in plants. Development 140:4008−19 doi: 10.1242/dev.095034
CrossRef Google Scholar
|
[20]
|
Osipova TN, Pospelov VA, Svetlikova SB, Vorob'ev VI. 1980. The role of histone H1 in compaction of nucleosomes. Sedimentation behaviour of oligonucleosomes in solution. European Journal of Biochemistry 113:183−88 doi: 10.1111/j.1432-1033.1980.tb06153.x
CrossRef Google Scholar
|
[21]
|
Ascenzi R, Gantt JS. 1997. A drought-stress-inducible histone gene in Arabidopsis thaliana is a member of a distinct class of plant linker histone variants. Plant Molecular Biology 34:629−41 doi: 10.1023/A:1005886011722
CrossRef Google Scholar
|
[22]
|
Hernandez-Lagana E, Mosca G, Mendocilla-Sato E, Pires N, Frey A, et al. 2021. Organ geometry channels reproductive cell fate in the Arabidopsis ovule primordium. Elife 10:e66031 doi: 10.7554/eLife.66031
CrossRef Google Scholar
|
[23]
|
Hernandez-Lagana E, Autran D. 2020. H3.1 eviction marks female germline precursors in Arabidopsis. Plants (Basel) 9:1322 doi: 10.3390/plants9101322
CrossRef Google Scholar
|
[24]
|
Guo L, Yu Y, Law JA, Zhang X. 2010. SET DOMAIN GROUP2 is the major histone H3 lysine 4 trimethyltransferase in Arabidopsis. PNAS 107:18557−62 doi: 10.1073/pnas.1010478107
CrossRef Google Scholar
|
[25]
|
Payne T, Johnson SD, Koltunow AM. 2004. KNUCKLES (KNU) encodes a C2H2 zinc-finger protein that regulates development of basal pattern elements of the Arabidopsis gynoecium. Development 131:3737−49 doi: 10.1242/dev.01216
CrossRef Google Scholar
|
[26]
|
Olmedo-Monfil V, Durán-Figueroa N, Arteaga-Vázquez M, Demesa-Arévalo E, Autran D, et al. 2010. Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 464:628−32 doi: 10.1038/nature08828
CrossRef Google Scholar
|
[27]
|
Rodríguez-Leal D, León-Martínez G, Abad-Vivero U, Vielle-Calzada JP. 2015. Natural variation in epigenetic pathways affects the specification of female gamete precursors in Arabidopsis. The Plant Cell 27:1034−45 doi: 10.1105/tpc.114.133009
CrossRef Google Scholar
|
[28]
|
Hernández-Lagana E, Rodríguez-Leal D, Lúa J, Vielle-Calzada JP. 2016. A multigenic network of ARGONAUTE4 clade members controls early megaspore formation in Arabidopsis. Genetics 204:1045−56 doi: 10.1534/genetics.116.188151
CrossRef Google Scholar
|
[29]
|
Peragine A, Yoshikawa M, Wu G, Albrecht HL, Poethig RS. 2004. SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes & Development 18:2368−79 doi: 10.1101/gad.1231804
CrossRef Google Scholar
|
[30]
|
Yoshikawa M, Peragine A, Park MY, Poethig RS. 2005. A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes & Development 19:2164−75 doi: 10.1101/gad.1352605
CrossRef Google Scholar
|
[31]
|
Himber C, Dunoyer P, Moissiard G, Ritzenthaler C, Voinnet O. 2003. Transitivity-dependent and -independent cell-to-cell movement of RNA silencing. The EMBO Journal 22:4523−33 doi: 10.1093/emboj/cdg431
CrossRef Google Scholar
|
[32]
|
Schmidt A, Wuest SE, Vijverberg K, Baroux C, Kleen D, et al. 2011. Transcriptome analysis of the Arabidopsis megaspore mother cell uncovers the importance of RNA helicases for plant germline development. PLoS Biology 9:e1001155 doi: 10.1371/journal.pbio.1001155
CrossRef Google Scholar
|
[33]
|
Zhao X, de Palma J, Oane R, Gamuyao R, Luo M, et al. 2008. OsTDL1A binds to the LRR domain of rice receptor kinase MSP1, and is required to limit sporocyte numbers. The Plant Journal 54:375−87 doi: 10.1111/j.1365-313X.2008.03426.x
CrossRef Google Scholar
|
[34]
|
Nonomura KI, Miyoshi K, Eiguchi M, Suzuki T, Miyao A, et al. 2003. The MSP1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice. The Plant Cell 15:1728−39 doi: 10.1105/tpc.012401
CrossRef Google Scholar
|
[35]
|
Sheridan WF, Avalkina NA, Shamrov II, Batyea TB, Golubovskaya IN. 1996. The mac1 gene: controlling the commitment to the meiotic pathway in maize. Genetics 142:1009−20 doi: 10.1093/genetics/142.3.1009
CrossRef Google Scholar
|
[36]
|
Sheridan WF, Golubeva EA, Abrhamova LI, Golubovskaya IN. 1999. The mac1 mutation alters the developmental fate of the hypodermal cells and their cellular progeny in the maize anther. Genetics 153:933−41 doi: 10.1093/genetics/153.2.933
CrossRef Google Scholar
|
[37]
|
Zhao L, Cai H, Su Z, Wang L, Huang X, et al. 2018. KLU suppresses megasporocyte cell fate through SWR1-mediated activation of WRKY28 expression in Arabidopsis. PNAS 115:E526−E535 doi: 10.1073/pnas.1716054115
CrossRef Google Scholar
|
[38]
|
Cai H, Liu L, Huang Y, Zhu W, Qi J, et al. 2022. Brassinosteroid signaling regulates female germline specification in Arabidopsis. Current Biology 32:1102−1114.E5 doi: 10.1016/j.cub.2022.01.022
CrossRef Google Scholar
|
[39]
|
Villanueva JM, Broadhvest J, Hauser BA, Meister RJ, Schneitz K, et al. 1999. INNER NO OUTER regulates abaxial- adaxial patterning in Arabidopsis ovules. Genes & Development 13:3160−69 doi: 10.1101/gad.13.23.3160
CrossRef Google Scholar
|
[40]
|
Klucher KM, Chow H, Reiser L, Fischer RL. 1996. The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. The Plant Cell 8:137−53 doi: 10.1105/tpc.8.2.137
CrossRef Google Scholar
|
[41]
|
Kelley DR, Skinner DJ, Gasser CS. 2009. Roles of polarity determinants in ovule development. The Plant Journal 57:1054−64 doi: 10.1111/j.1365-313X.2008.03752.x
CrossRef Google Scholar
|
[42]
|
Su Z, Zhao L, Zhao Y, Li S, Won S, et al. 2017. The THO Complex Non-Cell-Autonomously Represses Female Germline Specification through the TAS3-ARF3 Module. Current Biology 27:1597−1609.E2 doi: 10.1016/j.cub.2017.05.021
CrossRef Google Scholar
|
[43]
|
Su Z, Wang N, Hou Z, Li B, Li D, et al. 2020. Regulation of Female Germline Specification via Small RNA Mobility in Arabidopsis. The Plant Cell 32:2842−54 doi: 10.1105/tpc.20.00126
CrossRef Google Scholar
|
[44]
|
Gallego-Giraldo C, Hu J, Urbez C, Gomez MD, Sun T, et al. 2014. Role of the gibberellin receptors GID1 during fruit-set in Arabidopsis. The Plant Journal 79:1020−32 doi: 10.1111/tpj.12603
CrossRef Google Scholar
|
[45]
|
Zhao X, Bramsiepe J, Van Durme M, Komaki S, Prusicki MA, et al. 2017. RETINOBLASTOMA RELATED1 mediates germline entry in Arabidopsis. Science 356:eaaf6532 doi: 10.1126/science.aaf6532
CrossRef Google Scholar
|
[46]
|
De Veylder L, Beeckman T, Beemster GTS, Krols L, Terras F, et al. 2001. Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis. The Plant Cell 13:1653−68 doi: 10.1105/TPC.010087
CrossRef Google Scholar
|
[47]
|
Cao L, Wang S, Venglat P, Zhao L, Cheng Y, et al. 2018. Arabidopsis ICK/KRP cyclin-dependent kinase inhibitors function to ensure the formation of one megaspore mother cell and one functional megaspore per ovule. PLoS Genetics 14:e1007230 doi: 10.1371/journal.pgen.1007230
CrossRef Google Scholar
|
[48]
|
Mendes MA, Petrella R, Cucinotta M, Vignati E, Gatti S, et al. 2020. The RNA-dependent DNA methylation pathway is required to restrict SPOROCYTELESS/NOZZLE expression to specify a single female germ cell precursor in Arabidopsis. Development 147:dev194274 doi: 10.1242/dev.194274
CrossRef Google Scholar
|
[49]
|
Li L, Wu W, Zhao Y, Zheng B. 2017. A reciprocal inhibition between ARID1 and MET1 in male and female gametes in Arabidopsis. Journal of Integrative Plant Biology 59:657−68 doi: 10.1111/jipb.12573
CrossRef Google Scholar
|
[50]
|
Singh SK, Kumar V, Srinivasan R, Ahuja PS, Bhat SR, et al. 2017. The TRAF Mediated Gametogenesis Progression (TRAMGaP) gene is required for megaspore mother cell specification and gametophyte development. Plant Physiology 175:1220−37 doi: 10.1104/pp.17.00275
CrossRef Google Scholar
|
[51]
|
Tucker MR, Okada T, Hu Y, Scholefield A, Taylor JM, Koltunow AM. 2012. Somatic small RNA pathways promote the mitotic events of megagametogenesis during female reproductive development in Arabidopsis. Development 139:1399−404 doi: 10.1242/dev.075390
CrossRef Google Scholar
|
[52]
|
Zhao L, He J, Cai H, Lin H, Li Y, et al. 2014. Comparative expression profiling reveals gene functions in female meiosis and gametophyte development in Arabidopsis. The Plant Journal 80:615−28 doi: 10.1111/tpj.12657
CrossRef Google Scholar
|
[53]
|
Hou Z, Liu Y, Zhang M, Zhao L, Jin X, et al. 2021. High-throughput single-cell transcriptomics reveals the female germline differentiation trajectory in Arabidopsis thaliana. Communications Biology 4:1149 doi: 10.1038/s42003-021-02676-z
CrossRef Google Scholar
|
[54]
|
Lora J, Yang X, Tucker MR. 2019. Establishing a framework for female germline initiation in the plant ovule. Journal of Experimental Botany 70:2937−49 doi: 10.1093/jxb/erz212
CrossRef Google Scholar
|
[55]
|
Yang W, Sundaresan V. 2000. Genetics of gametophyte biogenesis in Arabidopsis. Current Opinion in Plant Biology 3:53−57 doi: 10.1016/S1369-5266(99)00037-0
CrossRef Google Scholar
|
[56]
|
Acosta-Garciéa G, Vielle-Calzada JP. 2004. A classical arabinogalactan protein is essential for the initiation of female gametogenesis in Arabidopsis. The Plant Cell 16:2614−28 doi: 10.1105/tpc.104.024588
CrossRef Google Scholar
|
[57]
|
Demesa-Arévalo E, Vielle-Calzada JP. 2013. The classical arabinogalactan protein AGP18 mediates megaspore selection in Arabidopsis. The Plant Cell 25:1274−87 doi: 10.1105/tpc.112.106237
CrossRef Google Scholar
|
[58]
|
Cheng CY, Mathews DE, Schaller GE, Kieber JJ. 2013. Cytokinin-dependent specification of the functional megaspore in the Arabidopsis female gametophyte. The Plant Journal 73:929−40 doi: 10.1111/tpj.12084
CrossRef Google Scholar
|
[59]
|
Vijayan A, Tofanelli R, Strauss S, Cerrone L, Wolny A, et al. 2021. A digital 3D reference atlas reveals cellular growth patterns shaping the Arabidopsis ovule. eLife 10:63262 doi: 10.7554/eLife.63262
CrossRef Google Scholar
|
[60]
|
Enugutti B, Oelschner M, Schneitz K. 2013. Microscopic analysis of ovule development in Arabidopsis thaliana. In Plant Organogenesis. Methods in Molecular Biology, ed. De Smet I. Vol. 959. Totowa, NJHumana Press. pp. 127−35 https://doi.org/10.1007/978-1-62703-221-6_7
|
[61]
|
Costa S. 2016. Cell identity: a matter of lineage and neighbours. The New Phytologist 210:1155−58 doi: 10.1111/nph.13859
CrossRef Google Scholar
|
[62]
|
Gross-Hardt R, Kägi C, Baumann N, Moore JM, Baskar R, et al. 2007. LACHESIS restricts gametic cell fate in the female gametophyte of Arabidopsis. PLoS Biology 5:e47 doi: 10.1371/journal.pbio.0050047
CrossRef Google Scholar
|
[63]
|
Sun Y, Wang X, Pan L, Xie F, Dai B, et al. 2021. Plant egg cell fate determination depends on its exact position in female gametophyte. PNAS 118:e2017488118 doi: 10.1073/pnas.2017488118
CrossRef Google Scholar
|