[1]

Masclaux-Daubresse C, Reisdorf-Cren M, Orsel M. 2008. Leaf nitrogen remobilisation for plant development and grain filling. Plant Biology 10:23−36

doi: 10.1111/j.1438-8677.2008.00097.x
[2]

Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, et al. 2004. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiology 136:2483−99

doi: 10.1104/pp.104.047019
[3]

Hahne KS, Schuch UK. 2004. Response of nitrate and ammonium on growth of Prosopis Velutina and Simmondsia Chinensis Seedlings. The University of Arizona College of Agriculture 2004 Turfgrass and Ornamental Research Report. http://cals.arizona.edu/pubs/crops/az1359

[4]

Rubio-Asensio JS, Bloom AJ. 2017. Inorganic nitrogen form: a major player in wheat and Arabidopsis responses to elevated CO2. Journal of Experimental Botany 68:2611−25

doi: 10.1093/jxb/erw465
[5]

Hachiya T, Inaba J, Wakazaki M, Sato M, Toyooka K, et al. 2021. Excessive ammonium assimilation by plastidic glutamine synthetase causes ammonium toxicity in Arabidopsis thaliana. Nature Communications 12:4944

doi: 10.1038/s41467-021-25238-7
[6]

Näsholm T, Kielland K, Ganeteg U. 2009. Uptake of organic nitrogen by plants. New Phytologist 182:31−48

doi: 10.1111/j.1469-8137.2008.02751.x
[7]

Ludewig U, Neuhäuser B, Dynowski M. 2007. Molecular mechanisms of ammonium transport and accumulation in plants. FEBS Letters 581:2301−8

doi: 10.1016/j.febslet.2007.03.034
[8]

Garnett T, Conn V, Kaiser BN. 2009. Root based approaches to improving nitrogen use efficiency in plants. Plant, Cell & Environment 32:1272−83

doi: 10.1111/j.1365-3040.2009.02011.x
[9]

Kiba T, Krapp A. 2016. Plant nitrogen acquisition under low availability: regulation of uptake and root architecture. Plant and Cell Physiology 57:707−14

doi: 10.1093/pcp/pcw052
[10]

Srivastava HS. 1980. Regulation of nitrate reductase activity in higher plants. Phytochemistry 19:725−33

doi: 10.1016/0031-9422(80)85100-4
[11]

Joy K, Hageman R. 1966. The purification and properties of nitrite reductase from higher plants, and its dependence on ferredoxin. Biochemical Journal 100:263−73

doi: 10.1042/bj1000263
[12]

Weber A, Flügge UI. 2002. Interaction of cytosolic and plastidic nitrogen metabolism in plants. Journal of Experimental Botany 53:865−74

doi: 10.1093/jexbot/53.370.865
[13]

Martínez-Andújar C, Ghanem ME, Albacete A, Pérez-Alfocea F. 2013. Response to nitrate/ammonium nutrition of tomato (Solanum lycopersicum L.) plants overexpressing a prokaryotic NH4+-dependent asparagine synthetase. Journal of Plant Physiology 170:676−87

doi: 10.1016/j.jplph.2012.12.011
[14]

Miller AJ, Cramer MD. 2005. Root nitrogen acquisition and assimilation. Plant and Soil 274:1−36

doi: 10.1007/s11104-004-0965-1
[15]

Stitt M, Müller C, Matt P, Gibon Y, Carillo P, et al. 2002. Steps towards an integrated view of nitrogen metabolism. Journal of Experimental Botany 53:959−70

doi: 10.1093/jexbot/53.370.959
[16]

Taylor AR, Bloom AJ. 1998. Ammonium, nitrate, and proton fluxes along the maize root. Plant, Cell & Environment 21:1255−63

doi: 10.1046/j.1365-3040.1998.00357.x
[17]

Li S, Wang Z, Stewart B. 2013. Responses of crop plants to ammonium and nitrate N. Advances in Agronomy 118:205−397

doi: 10.1016/B978-0-12-405942-9.00005-0
[18]

Borghi M, Fernie AR. 2017. Floral metabolism of sugars and amino acids: implications for pollinators' preferences and seed and fruit set. Plant Physiology 175:1510−24

doi: 10.1104/pp.17.01164
[19]

Hirai N, Yamamuro M, Koshimizu K, Shinozaki M, Takimoto A. 1994. Accumulation of phenylpropanoids in the cotyledons of morning glory (Pharbitis nil) seedlings during the induction of flowering by low temperature treatment, and the effect of precedent exposure to high-intensity light. Plant and Cell Physiology 35:691−95

doi: 10.1093/oxfordjournals.pcp.a078644
[20]

Gasser CS, Winter J, Hironaka CM, Shah DM. 1988. Structure, expression, and evolution of the 5-enolpyruvylshikimate-3-phosphate synthase genes of petunia and tomato. Journal of Biological Chemistry 263:4280−89

doi: 10.1016/S0021-9258(18)68922-7
[21]

Amrhein N, Deus B, Gehrke P, Steinrücken HC. 1980. The site of the inhibition of the shikimate pathway by glyphosate: II. Interference of glyphosate with chorismate formation in vivo and in vitro. Plant physiology 66:830−4

doi: 10.1104/pp.66.5.830
[22]

Rubin JL, Gaines CG, Jensen RA. 1984. Glyphosate inhibition of 5-enolpyruvylshikimate 3-phosphate synthase from suspension-cultured cells of Nicotiana silvestris. Plant Physiology 75:839−45

doi: 10.1104/pp.75.3.839
[23]

Foster J, Lee YH, Tegeder M. 2008. Distinct expression of members of the LHT amino acid transporter family in flowers indicates specific roles in plant reproduction. Sexual Plant Reproduction 21:143−52

doi: 10.1007/s00497-008-0074-z
[24]

Tegeder M, Rentsch D. 2010. Uptake and partitioning of amino acids and peptides. Molecular Plant 3:997−1011

doi: 10.1093/mp/ssq047
[25]

Yoo H, Widhalm JR, Qian Y, Maeda H, Cooper BR, et al. 2013. An alternative pathway contributes to phenylalanine biosynthesis in plants via a cytosolic tyrosine: phenylpyruvate aminotransferase. Nature Communications 4:2833

doi: 10.1038/ncomms3833
[26]

Kambhampati S, Li J, Evans BS, Allen DK. 2019. Accurate and efficient amino acid analysis for protein quantification using hydrophilic interaction chromatography coupled tandem mass spectrometry. Plant Methods 15:46

doi: 10.1186/s13007-019-0430-z
[27]

Tang Q-Y, Zhang C-X. 2013. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Science 20:254−60

doi: 10.1111/j.1744-7917.2012.01519.x
[28]

Jeong BR, Lee CW. 2007. Optimum Concentrations of $ {{\text{NH}}_4^+} $, $ {\text {NO}_3^-} $, and $ {\text{NH}_4^+} $ + $ { \text{NO}_3^- } $ for Petunia hybrida Grown in Peat-lite and Rockwool Media. Horticulture Environment and Biotechnology 48:325−31

[29]

Qian X, Shen Q, Xu G, Wang J, Zhou M. 2004. Nitrogen form effects on yield and nitrogen uptake of rice crop grown in aerobic soil. Journal of Plant Nutrition 27:1061−76

doi: 10.1081/PLN-120037536
[30]

Lewis OAM, Leidi EO, Lips SH. 1989. Effect of nitrogen source on growth response to salinity stress in maize and wheat. New Phytologist 111:155−60

doi: 10.1111/j.1469-8137.1989.tb00676.x
[31]

Claussen W, Lenz F. 1999. Effect of ammonium or nitrate nutrition on net photosynthesis, growth, and activity of the enzymes nitrate reductase and glutamine synthetase in blueberry, raspberry and strawberry. Plant and Soil 208:95−102

doi: 10.1023/A:1004543128899
[32]

Xu G, Wolf S, Kafkafi U. 2001. Effect of varying nitrogen form and concentration during growing season on sweet pepper flowering and fruit yield. Journal of Plant Nutrition 24:1099−116

doi: 10.1081/PLN-100103806
[33]

Huang S, Liang Z, Chen S, Sun H, Fan X, et al. 2019. A transcription factor, OsMADS57, regulates long-distance nitrate transport and root elongation. Plant Physiology 180:882−95

doi: 10.1104/pp.19.00142
[34]

Luo L, Zhang Y, Xu G. 2020. How does nitrogen shape plant architecture? Journal of Experimental Botany 71:4415−27

doi: 10.1093/jxb/eraa187
[35]

Walch-Liu P, Neumann G, Bangerth F, Engels C. 2000. Rapid effects of nitrogen form on leaf morphogenesis in tobacco. Journal of Experimental Botany 51:227−37

doi: 10.1093/jexbot/51.343.227
[36]

Dinkeloo K, Boyd S, Pilot G. 2018. Update on amino acid transporter functions and on possible amino acid sensing mechanisms in plants. Seminars in Cell & Developmental Biology 74:105−13

doi: 10.1016/j.semcdb.2017.07.010
[37]

Menand B, Desnos T, Nussaume L, Berger F, Bouchez D, et al. 2002. Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. PNAS 99:6422−27

doi: 10.1073/pnas.092141899
[38]

Li B, Li G, Kronzucker HJ, Baluška F, Shi W. 2014. Ammonium stress inArabidopsis: signaling, genetic loci, and physiological targets. Trends in Plant Science 19:107−14

doi: 10.1016/j.tplants.2013.09.004
[39]

Liu Y, von Wirén N. 2017. Ammonium as a signal for physiological and morphological responses in plants. Journal of Experimental Botany 68:2581−92

doi: 10.1093/jxb/erx086
[40]

Marino D, Moran JF. 2019. Can ammonium stress be positive for plant performance. Frontiers in Plant Science 10:1103

doi: 10.3389/fpls.2019.01103
[41]

Fuertes-Mendizábal T, González-Torralba J, Arregui LM, González-Murua C, González-Moro MB, et al. 2013. Ammonium as sole N source improves grain quality in wheat. Journal of the Science of Food and Agriculture 93:2162−71

doi: 10.1002/jsfa.6022
[42]

Kawabata S, Chujo W. 2008. Analysis of nitrogen and amino acid contents in cut and potted flowers of Eustoma grandiflorum. Journal of the Japanese Society for Horticultural Science 77:192−98

doi: 10.2503/jjshs1.77.192
[43]

Le BH, Cheng C, Bui AQ, Wagmaister JA, Henry KF, et al. 2010. Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. PNAS 107:8063−70

doi: 10.1073/pnas.1003530107
[44]

Gaufichon L, Marmagne A, Belcram K, Yoneyama T, Sakakibara Y, et al. 2017. ASN1-encoded asparagine synthetase in floral organs contributes to nitrogen filling in Arabidopsis seeds. The Plant Journal 91:371−93

doi: 10.1111/tpj.13567
[45]

Ivanov A, Kameka A, Pajak A, Bruneau L, Beyaert R, et al. 2012. Arabidopsis mutants lacking asparaginases develop normally but exhibit enhanced root inhibition by exogenous asparagine. Amino Acids 42:2307−18

doi: 10.1007/s00726-011-0973-4
[46]

Guan M, Møller I, Schjoerring J. 2015. Two cytosolic glutamine synthetase isoforms play specific roles for seed germination and seed yield structure in Arabidopsis. Journal of Experimental Botany 66:203−12

doi: 10.1093/jxb/eru411
[47]

Sarasketa A, González-Moro MB, González-Murua C, Marino D. 2014. Exploring ammonium tolerance in a large panel of Arabidopsis thaliana natural accessions. Journal of Experimental Botany 65:6023−33

doi: 10.1093/jxb/eru342