[1] |
Kunst L, Samuels AL. 2003. Biosynthesis and secretion of plant cuticular wax. Progress in Lipid Research 42:51−80 doi: 10.1016/S0163-7827(02)00045-0 |
[2] |
Samuels L, Kunst L, Jetter R. 2008. Sealing plant surfaces: cuticular wax formation by epidermal cells. Annual Review of Plant Biology 59:683−707 doi: 10.1146/annurev.arplant.59.103006.093219 |
[3] |
Yeats TH, Rose JKC. 2013. The formation and function of plant cuticles. Plant Physiology 163:5−20 doi: 10.1104/pp.113.222737 |
[4] |
Isaacson T, Kosma DK, Matas AJ, Buda GJ, He Y, et al. 2009. Cutin deficiency in the tomato fruit cuticle consistently affects resistance to microbial infection and biomechanical properties, but not transpirational water loss. The Plant Journal 60:363−77 doi: 10.1111/j.1365-313X.2009.03969.x |
[5] |
Fich EA, Segerson NA, Rose JKC. 2016. The plant polyester cutin: biosynthesis, structure, and biological roles. Annual Review of Plant Biology 67:207−33 doi: 10.1146/annurev-arplant-043015-111929 |
[6] |
Zhao Z, Yang X, Lü S, Fan J, Opiyo S, et al. 2020. Deciphering the novel role of AtMIN7 in cuticle formation and defense against the bacterial pathogen infection. International Journal of Molecular Sciences 21:5547 doi: 10.3390/ijms21155547 |
[7] |
Vogg G, Fischer S, Leide J, Emmanuel E, Jetter R, et al. 2004. Tomato fruit cuticular waxes and their effects on transpiration barrier properties: functional characterization of a mutant deficient in a very-long-chain fatty acid β-ketoacyl-CoA synthase. Journal of Experimental Botany 55:1401−10 doi: 10.1093/jxb/erh149 |
[8] |
Jetter R, Schäffer S. 2001. Chemical composition of the Prunus laurocerasus leaf surface. Dynamic changes of the epicuticular wax film during leaf development. Plant Physiology 126:1725−37 doi: 10.1104/pp.126.4.1725 |
[9] |
Buschhaus C, Herz H, Jetter R. 2007. Chemical composition of the epicuticular and intracuticular wax layers on adaxial sides of Rosa canina leaves. Annals of Botany 100:1557−64 doi: 10.1093/aob/mcm255 |
[10] |
Buschhaus C, Herz H, Jetter R. 2007. Chemical composition of the epicuticular and intracuticular wax layers on the adaxial side of Ligustrum vulgare leaves. New Phytologist 176:311−16 doi: 10.1111/j.1469-8137.2007.02190.x |
[11] |
Barthlott W, Neinhuis C, Cutler D, Ditsch F, Meusel I, et al. 1998. Classification and terminology of plant epicuticular waxes. Botanical Journal of the Linnean Society 126:237−60 doi: 10.1111/j.1095-8339.1998.tb02529.x |
[12] |
Seo PJ, Lee SB, Suh MC, Park MJ, Go YS, et al. 2011. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. The Plant Cell 23:1138−52 doi: 10.1105/tpc.111.083485 |
[13] |
Zhou A, Liu E, Liu J, Feng S, Gong S, et al. 2018. Characterization of increased cuticular wax mutant and analysis of genes involved in wax biosynthesis in Dianthus spiculifolius. Horticulture Research 5:40 doi: 10.1038/s41438-018-0044-z |
[14] |
Bloch D, Werdenberg N, Erhardt A. 2006. Pollination crisis in the butterfly-pollinated wild carnation Dianthus carthusianorum. New Phytologist 169:699−706 doi: 10.1111/j.1469-8137.2006.01653.x |
[15] |
Fu XP, Ning GG, Gao LP, Bao MZ. 2008. Genetic diversity of Dianthus accessions as assessed using two molecular marker systems (SRAPs and ISSRs) and morphological traits. Scientia Horticulturae 117:263−70 doi: 10.1016/j.scienta.2008.04.001 |
[16] |
Wójcik M, Dresler S, Jawor E, Kowalczyk K, Tukiendorf A. 2013. Morphological, physiological, and genetic variation between metallicolous and nonmetallicolous populations of Dianthus carthusianorum. Chemosphere 90:1249−57 doi: 10.1016/j.chemosphere.2012.09.068 |
[17] |
Putz CM, Schmid C, Reisch C. 2015. Living in isolation - population structure, reproduction, and genetic variation of the endangered plant species Dianthus gratianopolitanus (Cheddar pink). Ecology and Evolution 5:3610−21 doi: 10.1002/ece3.1611 |
[18] |
Adamski NM, Bush MS, Simmonds J, Turner AS, Mugford SG, et al. 2013. Theinhibitor of wax 1 locus (Iw1) prevents formation of β- and OH-β-diketones in wheat cuticular waxes and maps to a sub-cM interval on chromosome arm 2BS. The Plant Journal 74:989−1002 doi: 10.1111/tpj.12185 |
[19] |
Zhou Q, Li C, Mishina K, Zhao J, Zhang J, et al. 2017. Characterization and genetic mapping of the β-diketone deficient eceriferum-b barley mutant. Theoretical and Applied Genetics 130:1169−78 doi: 10.1007/s00122-017-2877-5 |
[20] |
Nødskov Giese B. 1975. Effects of light and temperature on the composition of epicuticular wax of barley leaves. Phytochemistry 14:921−29 doi: 10.1016/0031-9422(75)85160-0 |
[21] |
Riedel M, Eichner A, Jetter R. 2003. Slippery surfaces of carnivorous plants: composition of epicuticular wax crystals in Nepenthes alata Blanco pitchers. Planta 218:87−97 doi: 10.1007/s00425-003-1075-7 |
[22] |
Feng S, Ren L, Sun H, Qiao K, Liu S, Zhou A. 2020. Morphological and physiological responses of two willow species from different habitats to salt stress. Scientific Reports 10:18228 doi: 10.1038/s41598-020-75349-2 |