[1] |
Marks RA, Hotaling S, Frandsen PB, VanBuren R. 2021. Representation and participation across 20 years of plant genome sequencing. Nature Plants 7:1571−78 doi: 10.1038/s41477-021-01031-8 |
[2] |
Hou X, Wang D, Cheng Z, Wang Y, Jiao Y. 2022. A near-complete assembly of an Arabidopsis thaliana genome. Molecular Plant 15:1247−50 doi: 10.1016/j.molp.2022.05.014 |
[3] |
Frei D, Veekman E, Grogg D, Stoffel-Studer I, Morishima A, et al. 2021. Ultralong Oxford nanopore reads enable the development of a reference-grade perennial ryegrass genome assembly. Genome Biology and Evolution 13:evab159 doi: 10.1093/gbe/evab159 |
[4] |
Yang X, Gao S, Guo L, Wang B, Jia Y, et al. 2021. Three chromosome-scale Papaver genomes reveal punctuated patchwork evolution of the morphinan and noscapine biosynthesis pathway. Nature Communications 12:6030 doi: 10.1038/s41467-021-26330-8 |
[5] |
Deng Y, Liu S, Zhang Y, Tan J, Li X, et al. 2022. A telomere-to-telomere gap-free reference genome of watermelon and its mutation library provide important resources for gene discovery and breeding. Molecular Plant 15:1268−84 doi: 10.1016/j.molp.2022.06.010 |
[6] |
Song J, Xie W, Wang S, Guo Y, Koo DH, et al. 2021. Two gap-free reference genomes and a global view of the centromere architecture in rice. Molecular Plant 14:1757−67 doi: 10.1016/j.molp.2021.06.018 |
[7] |
Liu J, Seetharam AS, Chougule K, Ou S, Swentowsky KW, et al. 2020. Gapless assembly of maize chromosomes using long-read technologies. Genome Biology 21:121 doi: 10.1186/s13059-020-02029-9 |
[8] |
Liu H, Wang X, Wang G, Cui P, Wu S, et al. 2021. The nearly complete genome of Ginkgo biloba illuminates gymnosperm evolution. Nature Plants 7:748−56 doi: 10.1038/s41477-021-00933-x |
[9] |
Zhang L, Hu J, Han X, Li J, Gao Y, et al. 2019. A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour. Nature Communications 10:1494 doi: 10.1038/s41467-019-09518-x |
[10] |
Gong L, Wong CH, Idol J, Ngan CY, Wei CL. 2019. Ultra-long read sequencing for whole genomic dna analysis. Journal of Visualized Experiments 145:e58954 doi: 10.3791/58954 |
[11] |
Prall TM, Neumann EK, Karl JA, Shortreed CG, Baker DA, et al. 2021. Consistent ultra-long DNA sequencing with automated slow pipetting. BMC Genomics 22:182 doi: 10.1186/s12864-021-07500-w |
[12] |
Lang D, Zhang S, Ren P, Liang F, Sun Z, et al. 2020. Comparison of the two up-to-date sequencing technologies for genome assembly: HiFi reads of Pacific Biosciences Sequel II system and ultralong reads of Oxford Nanopore. GigaScience 9:giaa123 doi: 10.1093/gigascience/giaa123 |
[13] |
Logsdon GA, Vollger MR, Eichler EE. 2020. Long-read human genome sequencing and its applications. Nature Reviews Genetics 21:597−614 doi: 10.1038/s41576-020-0236-x |
[14] |
Yuan Y, Chung CY, Chan TF. 2020. Advances in optical mapping for genomic research. Computational and Structural Biotechnology Journal 18:2051−62 doi: 10.1016/j.csbj.2020.07.018 |
[15] |
Wenger AM, Peluso P, Rowell WJ, Chang PC, Hall RJ, et al. 2019. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nature Biotechnology 37:1155−62 doi: 10.1038/s41587-019-0217-9 |
[16] |
Chin CS, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, et al. 2016. Phased diploid genome assembly with single-molecule real-time sequencing. Nature Methods 13:1050−54 doi: 10.1038/nmeth.4035 |
[17] |
Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nature Methods 10:563−69 doi: 10.1038/nmeth.2474 |
[18] |
Li H. 2016. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics 32:2103−10 doi: 10.1093/bioinformatics/btw152 |
[19] |
Kolmogorov M, Yuan J, Lin Y, Pevzner PA. 2019. Assembly of long, error-prone reads using repeat graphs. Nature Biotechnology 37:540−46 doi: 10.1038/s41587-019-0072-8 |
[20] |
Kamath GM, Shomorony I, Xia F, Courtade TA, Tse DN. 2017. HINGE: long-read assembly achieves optimal repeat resolution. Genome Research 27:747−56 doi: 10.1101/gr.216465.116 |
[21] |
Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, et al. 2017. Canu: scalable and accurate long-read assembly via adaptivek k-mer weighting and repeat separation. Genome Research 27:722−36 doi: 10.1101/gr.215087.116 |
[22] |
Ruan J, Li H. 2020. Fast and accurate long-read assembly with wtdbg2. Nature Methods 17:155−58 doi: 10.1038/s41592-019-0669-3 |
[23] |
Shafin K, Pesout T, Lorig-Roach R, Haukness M, Olsen HE, et al. 2020. Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly of eleven human genomes. Nature Biotechnology 38:1044−53 doi: 10.1038/s41587-020-0503-6 |
[24] |
Di Genova A, Buena-Atienza E, Ossowski S, Sagot MF. 2021. Efficient hybrid de novo assembly of human genomes with WENGAN. Nature Biotechnology 39:422−30 doi: 10.1038/s41587-020-00747-w |
[25] |
Nurk S, Walenz BP, Rhie A, Vollger MR, Logsdon GA, et al. 2020. HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads. Genome Research 30:1291−305 doi: 10.1101/gr.263566.120 |
[26] |
Cheng H, Concepcion GT, Feng X, Zhang H, Li H. 2021. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nature Methods 18:170−75 doi: 10.1038/s41592-020-01056-5 |
[27] |
Burton JN, Adey A, Patwardhan RP, Qiu R, Kitzman JO, et al. 2013. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nature Biotechnology 31:1119−25 doi: 10.1038/nbt.2727 |
[28] |
Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, et al. 2017. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356:92−95 doi: 10.1126/science.aal3327 |
[29] |
Zhang X, Zhang S, Zhao Q, Ming R, Tang H. 2019. Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data. Nature Plants 5:833−45 doi: 10.1038/s41477-019-0487-8 |
[30] |
Zhang J, Zhang X, Tang H, Zhang Q, Hua X, et al. 2018. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nature Genetics 50:1565−73 doi: 10.1038/s41588-018-0237-2 |
[31] |
Alonge M, Soyk S, Ramakrishnan S, Wang X, Goodwin S, et al. 2019. RaGOO: fast and accurate reference-guided scaffolding of draft genomes. Genome Biology 20:224 doi: 10.1186/s13059-019-1829-6 |
[32] |
Seppey M, Manni M, Zdobnov EM. 2019. BUSCO: Assessing Genome Assembly and Annotation Completeness. In Gene Prediction. Methods in Molecular Biology, ed. Kollmar M. vol 1962. New York: Humana, New York. pp. 227–45 https://doi.org/10.1007/978-1-4939-9173-0_14 |
[33] |
Wick RR, Holt KE. 2019. Benchmarking of long-read assemblers for prokaryote whole genome sequencing. F1000Research 8:2138 doi: 10.12688/f1000research.21782.1 |
[34] |
Liu H, Wu S, Li A, Ruan J. 2021. SMARTdenovo: A de novo Assembler Using Long Noisy Reads. Gigabyte 2021:1−9 doi: 10.46471/gigabyte.15 |
[35] |
Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M, et al. 2018. Accurate detection of complex structural variations using single-molecule sequencing. Nature Methods 15:461−68 doi: 10.1038/s41592-018-0001-7 |
[36] |
Bzikadze AV, Pevzner PA. 2020. Automated assembly of centromeres from ultra-long error-prone reads. Nature Biotechnology 38:1309−16 doi: 10.1038/s41587-020-0582-4 |
[37] |
Chen Y, Nie F, Xie S, Zheng Y, Dai Q, et al. 2021. Efficient assembly of nanopore reads via highly accurate and intact error correction. Nature Communications 12:60 doi: 10.1038/s41467-020-20236-7 |
[38] |
Hu J, Fan J, Sun Z, Liu S. 2020. NextPolish: a fast and efficient genome polishing tool for long-read assembly. Bioinformatics 36:2253−55 doi: 10.1093/bioinformatics/btz891 |
[39] |
Vaser R, Šikić M. 2021. Time- and memory-efficient genome assembly with Raven. Nature Computational Science 1:332−36 doi: 10.1038/s43588-021-00073-4 |
[40] |
Du H, Liang C. 2019. Assembly of chromosome-scale contigs by efficiently resolving repetitive sequences with long reads. Nature Communications 10:5360 doi: 10.1038/s41467-019-13355-3 |
[41] |
Servant N, Varoquaux N, Lajoie BR, Viara E, Chen C, et al. 2015. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biology 16:259 doi: 10.1186/s13059-015-0831-x |
[42] |
Ghurye J, Pop M, Koren S, Bickhart D, Chin CS. 2017. Scaffolding of long read assemblies using long range contact information. BMC Genomics 18:527 doi: 10.1186/s12864-017-3879-z |
[43] |
Boetzer M, Pirovano W. 2012. Toward almost closed genomes with GapFiller. Genome Biology 13:R56 doi: 10.1186/gb-2012-13-6-r56 |
[44] |
Xu M, Guo L, Gu S, Wang O, Zhang R, et al. 2020. TGS-GapCloser: A fast and accurate gap closer for large genomes with low coverage of error-prone long reads. GigaScience 9:giaa094 doi: 10.1093/gigascience/giaa094 |
[45] |
Chu C, Li X, Wu Y. 2019. GAPPadder: a sensitive approach for closing gaps on draft genomes with short sequence reads. BMC Genomics 20:426 doi: 10.1186/s12864-019-5703-4 |
[46] |
English AC, Richards S, Han Y, Wang M, Vee V, et al. 2012. Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS One 7:e47768 doi: 10.1371/journal.pone.0047768 |
[47] |
Chen P, Jing X, Ren J, Cao H, Hao P, et al. 2018. Modelling BioNano optical data and simulation study of genome map assembly. Bioinformatics 34:3966−74 doi: 10.1093/bioinformatics/bty456 |
[48] |
Michaeli Y, Ebenstein Y. 2012. Channeling DNA for optical mapping. Nature Biotechnology 30:762−63 doi: 10.1038/nbt.2324 |
[49] |
Wang B, Yang X, Jia Y, Xu Y, Jia P, et al. 2021. High-quality Arabidopsis thaliana genome assembly with nanopore and HiFi long reads. Genomics, Proteomics & Bioinformatics 20:4−13 doi: 10.1016/j.gpb.2021.08.003 |
[50] |
Kyriakidou M, Tai HH, Anglin NL, Ellis D, Strömvik MV. 2018. Current strategies of polyploid plant genome sequence assembly. Frontiers in Plant Science 9:1660 doi: 10.3389/fpls.2018.01660 |
[51] |
Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, et al. 2022. The complete sequence of a human genome. Science 376:44−53 doi: 10.1126/science.abj6987 |
[52] |
Belser C, Baurens FC, Noel B, Martin G, Cruaud C, et al. 2021. Telomere-to-telomere gapless chromosomes of banana using nanopore sequencing. Communications Biology 4:1047 doi: 10.1038/s42003-021-02559-3 |
[53] |
Miga KH, Koren S, Rhie A, Vollger MR, Gershman A, et al. 2020. Telomere-to-telomere assembly of a complete human X chromosome. Nature 585:79−84 doi: 10.1038/s41586-020-2547-7 |
[54] |
Logsdon GA, Vollger MR, Hsieh P, Mao Y, Liskovykh MA, et al. 2021. The structure, function and evolution of a complete human chromosome 8. Nature 593:101−7 doi: 10.1038/s41586-021-03420-7 |
[55] |
Lin X, Kaul S, Rounsley S, Shea TP, Benito MI, et al. 1999. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402:761−68 doi: 10.1038/45471 |
[56] |
Naish M, Alonge M, Wlodzimierz P, Tock AJ, Abramson BW, et al. 2021. The genetic and epigenetic landscape of the Arabidopsis centromeres. Science 374:eabi7489 doi: 10.1126/science.abi7489 |
[57] |
Chen F, Song Y, Li X, Chen J, Mo L, et al. 2019. Genome sequences of horticultural plants: past, present, and future. Horticulture Research 6:112 doi: 10.1038/s41438-019-0195-6 |
[58] |
Rhie A, McCarthy SA, Fedrigo O, Damas J, Formenti G, et al. 2021. Towards complete and error-free genome assemblies of all vertebrate species. Horticulture Research 592:737−46 doi: 10.1038/s41586-021-03451-0 |
[59] |
Kress WJ, Soltis DE, Kersey PJ, Wegrzyn JL, Leebens-Mack JH, et al. 2022. Green plant genomes: What we know in an era of rapidly expanding opportunities. PNAS 119:e2115640118 doi: 10.1073/pnas.2115640118 |
[60] |
Di Marco M, Harwood TD, Hoskins AJ, Ware C, Hill SLL, et al. 2019. Projecting impacts of global climate and land-use scenarios on plant biodiversity using compositional-turnover modelling. Global Change Biology 25:2763−78 doi: 10.1111/gcb.14663 |
[61] |
Dodsworth S, Leitch AR, Leitch IJ. 2015. Genome size diversity in angiosperms and its influence on gene space. Current Opinion in Genetics & Development 35:73−8 doi: 10.1016/j.gde.2015.10.006 |
[62] |
McGrath CL, Katz LA. 2004. Genome diversity in microbial eukaryotes. Trends in Ecology & Evolution 19:32−38 doi: 10.1016/j.tree.2003.10.007 |
[63] |
Li J, Lv M, Du L, Yunga A, Hao S, et al. 2020. An enormous Paris polyphylla genome sheds light on genome size evolution and polyphyllin biogenesis. bioRxiv Preprint doi: 10.1101/2020.06.01.126920 |
[64] |
Luo R, Liu B, Xie Y, Li Z, Huang W, et al. 2012. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1:2047-217X-1-18 doi: 10.1186/2047-217X-1-18 |
[65] |
Niu S, Li J, Bo W, Yang W, Zuccolo A, et al. 2022. The Chinese pine genome and methylome unveil key features of conifer evolution. Cell 185:204−217.E14 doi: 10.1016/j.cell.2021.12.006 |
[66] |
Chen H, Zeng Y, Yang Y, Huang L, Tang B, et al. 2020. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nature Communications 11:2494 doi: 10.1038/s41467-020-16338-x |
[67] |
Walkowiak S, Gao L, Monat C, Haberer G, Kassa MT, et al. 2020. Multiple wheat genomes reveal global variation in modern breeding. Nature 588:277−83 doi: 10.1038/s41586-020-2961-x |
[68] |
Zhuang W, Chen H, Yang M, Wang J, Pandey MK, et al. 2019. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nature Genetics 51:865−76 doi: 10.1038/s41588-019-0402-2 |