[1]

Liu H, Yin C, Gao Z, Hou L. 2021. Evaluation of cucumber yield, economic benefit and water productivity under different soil matric potentials in solar greenhouses in North China. Agricultural Water Management 243:106442

doi: 10.1016/j.agwat.2020.106442
[2]

Niu C, Wang G, Sui J, Liu G, Ma F, et al. 2022. Biostimulants alleviate temperature stress in tomato seedlings. Scientia Horticulturae 293:110712

doi: 10.1016/j.scienta.2021.110712
[3]

Szymańska R, Ślesak I, Orzechowska A, Kruk J. 2017. Physiological and biochemical responses to high light and temperature stress in plants. Environmental and Experimental Botany 139:165−77

doi: 10.1016/j.envexpbot.2017.05.002
[4]

Zhang J, Li DM, Gao Y, Yu B, Xia CX, et al. 2012. Pretreatment with 5-aminolevulinic acid mitigates heat stress of cucumber leaves. Biologia Plantarum 56:780−4

doi: 10.1007/s10535-012-0136-9
[5]

Weng J, Li P, Rehman A, Wang L, Gao X, et al. 2021. Physiological response and evaluation of melon (Cucumis melo L.) germplasm resources under high temperature and humidity stress at seedling stage. Scientia Horticulturae 288:110317

doi: 10.1016/j.scienta.2021.110317
[6]

Rosa N, Àvila G, Carbó J, Verjans W, Bonany J, et al. 2022. Response of Malus × domestica Borkh to metamitron and high night temperature: effects on physiology and fruit abscission. Scientia Horticulturae 292:110610

doi: 10.1016/j.scienta.2021.110610
[7]

Reva M, Cano C, Herrera M, Bago A. 2021. Arbuscular mycorrhizal inoculation enhances endurance to severe heat stress in three horticultural crops. HortScience 56:396−406

doi: 10.21273/HORTSCI14888-20
[8]

Collado-González J, Piñero MC, Otálora G, López-Marín J, del Amor FM. 2021. The effect of foliar putrescine application, ammonium exposure, and heat stress on antioxidant compounds in cauliflower waste. Antioxidants 10:707

doi: 10.3390/antiox10050707
[9]

Wang W, Paschalidis K, Feng J, Song J, Liu J. 2019. Polyamine catabolism in plants: a universal process with diverse functions. Frontiers in Plant Science 10:561

doi: 10.3389/fpls.2019.00561
[10]

Jahan MS, Hasan MM, Alotaibi FS, Alabdallah NM, Alharbi BM, et al. 2022. Exogenous putrescine increases heat tolerance in tomato seedlings by regulating chlorophyll metabolism and enhancing antioxidant defense efficiency. Plants 11:1038

doi: 10.3390/plants11081038
[11]

Das A, Karwa S, Taunk J, Bahuguna RN, Chaturvedi AK, et al. 2021. Putrescine exogenous application alleviates oxidative stress in reproductive tissue under high temperature in rice. Plant Physiology Reports 26:381−91

doi: 10.1007/s40502-021-00590-4
[12]

Yuan R, Shu S, Guo S, Sun J, Wu J. 2018. The positive roles of exogenous putrescine on chlorophyll metabolism and xanthophyll cycle in salt-stressed cucumber seedlings. Photosynthetica 56:557−66

doi: 10.1007/s11099-017-0712-5
[13]

Pál M, Szalai G, Janda T. 2015. Speculation: polyamines are important in abiotic stress signaling. Plant Science 237:16−23

doi: 10.1016/j.plantsci.2015.05.003
[14]

Kolupaev YE, Kokorev AI, Shkliarevskyi MA, Lugovaya AA, Karpets YV, et al. 2021. Role of NO synthesis modification in the protective effect of putrescine in wheat seedlings subjected to heat stress. Applied Biochemistry and Microbiology 57:384−91

doi: 10.1134/S0003683821030066
[15]

Piñero MC, Otálora G, Collado J, López-Marín J, del Amor FM. 2021. Foliar application of putrescine before a short-term heat stress improves the quality of melon fruits (Cucumis melo L.). Journal of the Science of Food and Agriculture 101:1428−35

doi: 10.1002/jsfa.10756
[16]

Yu Y, Lv Y, Shi Y, Li T, Chen Y, et al. 2018. The role of phyto-melatonin and related metabolites in response to stress. Molecules 23:1887

doi: 10.3390/molecules23081887
[17]

Tan DX, Reiter RJ. 2020. An evolutionary view of melatonin synthesis and metabolism related to its biological functions in plants. Journal of Experimental Botany 71:4677−89

doi: 10.1093/jxb/eraa235
[18]

Li X, Ahammed GJ, Zhang X, Zhang L, Yan P, et al. 2021. Melatonin-mediated regulation of anthocyanin biosynthesis and antioxidant defense confer tolerance to arsenic stress in Camellia sinensis L. Journal of Hazardous Materials 403:123922

doi: 10.1016/j.jhazmat.2020.123922
[19]

Tiwari RK, Lal MK, Naga KC, Kumar R, Chourasia KN, et al. 2020. Emerging roles of melatonin in mitigating abiotic and biotic stresses of horticultural crops. Scientia Horticulturae 272:109592

doi: 10.1016/j.scienta.2020.109592
[20]

Jahan MS, Guo S, Baloch AR, Sun J, Shu S, et al. 2020. Melatonin alleviates nickel phytotoxicity by improving photosynthesis, secondary metabolism and oxidative stress tolerance in tomato seedlings. Ecotoxicology and Environmental Safety 197:110593

doi: 10.1016/j.ecoenv.2020.110593
[21]

Jahan MS, Shu S, Wang Y, Hasan MM, El-Yazied AA, et al. 2021. Melatonin pretreatment confers heat tolerance and repression of heat-induced senescence in tomato through the modulation of ABA- and GA-mediated pathways. Frontiers in Plant Science 12:650955

doi: 10.3389/fpls.2021.650955
[22]

Jahan MS, Guo SR, Sun J, Shu S, Wang Y, et al. 2021. Melatonin-mediated photosynthetic performance of tomato seedlings under high-temperature stress. Plant Physiology and Biochemistry 167:309−20

doi: 10.1016/j.plaphy.2021.08.002
[23]

Wang Y, Reiter R, Chan Z. 2018. Phytomelatonin: a universal abiotic stress regulator. Journal of Experimental Botany 69:963−74

doi: 10.1093/jxb/erx473
[24]

Jahan MS, Shu S, Wang Y, Chen Z, He M, et al. 2019. Melatonin alleviates heat-induced damage of tomato seedlings by balancing redox homeostasis and modulating polyamine and nitric oxide biosynthesis. BMC Plant Biology 19:414

doi: 10.1186/s12870-019-1992-7
[25]

dos Santos AR, Melo YL, de Oliveira LF, Cavalcante IE, de Souza Ferraz RL, et al. 2022. Exogenous silicon and proline modulate osmoprotection and antioxidant activity in cowpea under drought stress. Journal of Soil Science and Plant Nutrition 22:1692−99

doi: 10.1007/s42729-022-00764-5
[26]

Hanif S, Saleem MF, Sarwar M, Irshad M, Shakoor A, et al. 2021. Biochemically triggered heat and drought stress tolerance in rice by proline application. Journal of Plant Growth Regulation 40:305−12

doi: 10.1007/s00344-020-10095-3
[27]

Hayat K, Khan J, Khan A, Ullah S, Ali S, et al. 2021. Ameliorative effects of exogenous proline on photosynthetic attributes, nutrients uptake, and oxidative stresses under cadmium in pigeon pea (Cajanus cajan L. ). Plants 10:796

doi: 10.3390/plants10040796
[28]

Đukić NH, Marković SM, Mastilović JS, Simović P. 2021. Differences in proline accumulation between wheat varieties in response to heat stress. Botanica Serbica 45:61−69

doi: 10.2298/BOTSERB2101061D
[29]

Hussain R, Ayyub CM, Shaheen MR, Rashid S, Nafees M, et al. 2021. Regulation of osmotic balance and increased antioxidant activities under heat stress in Abelmoschus esculentus L. triggered by exogenous proline application. Agronomy 11:685

doi: 10.3390/agronomy11040685
[30]

Tonhati R, Mello SC, Momesso P, Pedroso RM. 2020. L-proline alleviates heat stress of tomato plants grown under protected environment. Scientia Horticulturae 268:109370

doi: 10.1016/j.scienta.2020.109370
[31]

Wang Y, Lin Q, Xiao R, Cheng S, Luo H, et al. 2020. Removal of Cu and Pb from contaminated agricultural soil using mixed chelators of fulvic acid potassium and citric acid. Ecotoxicology and Environmental Safety 206:111179

doi: 10.1016/j.ecoenv.2020.111179
[32]

Van Oosten MJ, Pepe O, De Pascale S, Silletti S, Maggio A. 2017. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture 4:5

doi: 10.1186/s40538-017-0089-5
[33]

Jin Q, Zhang Y, Wang Q, Li M, Sun H, et al. 2022. Effects of potassium fulvic acid and potassium humate on microbial biodiversity in bulk soil and rhizosphere soil of Panax ginseng. Microbiological Research 254:126914

doi: 10.1016/j.micres.2021.126914
[34]

Gao L, Ren W, Luo B. 2016. Study on the application effect of potassium fulvic acid on heading lettuce. Humic Acid 4:26−9

[35]

Zhou L, Sun L, Mao H, Dong Q. 2012. Effects of drought-resistant fulvic acid liquid fertilizer on wheat and maize growth. Agricultural Research in the Arid Areas 30:154−8

[36]

Said EAM, Sallume MO. 2020. Effect of addition potassium and spray (humic and fulvic) acids application on some growth and yield characteristics of squash, Cucurbita pepo L. Biochemical and Cellular Archives 20:769−76

[37]

Canellas LP, Olivares FL, Aguiar NO, Jones DL, Nebbioso A, et al. 2015. Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae 196:15−27

doi: 10.1016/j.scienta.2015.09.013
[38]

Jagadish SVK, Way DA, Sharkey TD. 2021. Plant heat stress: concepts directing future research. Plant, Cell & Environment 44:1992−2005

doi: 10.1111/pce.14050
[39]

Janni M, Gullì M, Maestri E, Marmiroli M, Valliyodan B, et al. 2020. Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. Journal of Experimental Botany 71:3780−802

doi: 10.1093/jxb/eraa034
[40]

Wu D, Zhu J, Shu Z, Wang W, Sun G. 2020. Physiological and transcriptional response to heat stress in heat-resistant and heat-sensitive maize (Zea mays L.) inbred lines at seedling stage. Protoplasma 257:1615−37

doi: 10.1007/s00709-020-01538-5
[41]

Wang L, Liu J, Wang W, Sun Y. 2016. Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress. Photosynthetica 54:19−27

doi: 10.1007/s11099-015-0140-3
[42]

Hassan N, Ebeed H, Aljaarany A. 2020. Exogenous application of spermine and putrescine mitigate adversities of drought stress in wheat by protecting membranes and chloroplast ultra-structure. Physiology and Molecular Biology of Plants 26:233−45

doi: 10.1007/s12298-019-00744-7
[43]

Wu X, Shu S, Wang Y, Yuan R, Guo S. 2019. Exogenous putrescine alleviates photoinhibition caused by salt stress through cooperation with cyclic electron flow in cucumber. Photosynthesis Research 141:303−14

doi: 10.1007/s11120-019-00631-y
[44]

Shu S, Yuan R, Shen J, Chen J, Wang L, et al. 2019. The positive regulation of putrescine on light-harvesting complex II and excitation energy dissipation in salt-stressed cucumber seedlings. Environmental and Experimental Botany 162:283−94

doi: 10.1016/j.envexpbot.2019.02.027
[45]

Imran M, Aaqil Khan M, Shahzad R, Bilal S, Khan M, et al. 2021. Melatonin ameliorates thermotolerance in soybean seedling through balancing redox homeostasis and modulating antioxidant defense, phytohormones and polyamines biosynthesis. Molecules 26:5116

doi: 10.3390/molecules26175116
[46]

Buttar ZA, Wu S, Arnao MB, Wang C, Ullah I, et al. 2020. Melatonin suppressed the heat stress-induced damage in wheat seedlings by modulating the antioxidant machinery. Plants 9:809

doi: 10.3390/plants9070809
[47]

Ahammed GJ, Xu W, Liu A, Chen S. 2019. Endogenous melatonin deficiency aggravates high temperature-induced oxidative stress in Solanum lycopersicum L. Environmental and Experimental Botany 161:303−11

doi: 10.1016/j.envexpbot.2018.06.006
[48]

Anjum SA, Wang L, Farooq M, Xue L, Ali S. 2011. Fulvic acid application improves the maize performance under well-watered and drought conditions. Journal of Agronomy and Crop Science 197:409−17

doi: 10.1111/j.1439-037X.2011.00483.x
[49]

Ghosh UK, Islam MN, Siddiqui MN, Cao X, Khan MAR. 2022. Proline, a multifaceted signalling molecule in plant responses to abiotic stress: understanding the physiological mechanisms. Plant Biology 24:227−39

doi: 10.1111/plb.13363
[50]

Wei Y, Wang Y, Wu X, Shu S, Sun J, et al. 2019. Redox and thylakoid membrane proteomic analysis reveals the Momordica (Momordica charantia L.) rootstock-induced photoprotection of cucumber leaves under short-term heat stress. Plant Physiology and Biochemistry 136:98−108

doi: 10.1016/j.plaphy.2019.01.010
[51]

Muhammad I, Shalmani A, Ali M, Yang Q, Ahmad H, et al. 2021. Mechanisms regulating the dynamics of photosynthesis under abiotic stresses. Frontiers in Plant Science 11:615942

doi: 10.3389/fpls.2020.615942
[52]

Hong SW, Lee U, Vierling E. 2003. Arabidopsis hot mutants define multiple functions required for acclimation to high temperatures. Plant Physiology 132:757−67

doi: 10.1104/pp.102.017145
[53]

Hodges DM, DeLong JM, Forney CF, Prange RK. 1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604−11

doi: 10.1007/s004250050524
[54]

Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water stress studies. Plant Soil 39:205−7

doi: 10.1007/BF00018060
[55]

Velikova V, Yordanov I, Edreva A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science 151:59−66

doi: 10.1016/S0168-9452(99)00197-1
[56]

Arnon DI. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta Vulgaris. Plant Physiology 24:1−15

doi: 10.1104/pp.24.1.1
[57]

Dion P, Jämtgård S, Bertrand A, Thériault M, Pepin S, et al. 2021. Growing medium soluble carbon and nitrogen influence xylem sap and soluble solid contents in greenhouse cucumber fruits. Canadian Journal of Plant Science 101:366−76

doi: 10.1139/cjps-2020-0097
[58]

Dyduch-Siemińska M, Najda A, Dyduch J, Gantner M, Klimek K. 2015. The content of secondary metabolites and antioxidant activity of wild strawberry fruit (Fragaria vesca L.). Journal of Analytical Methods in Chemistry 2015:831238

doi: 10.1155/2015/831238
[59]

Wang H, Li J, Cheng M, Zhang F, Wang X, et al. 2019. Optimal drip fertigation management improves yield, quality, water and nitrogen use efficiency of greenhouse cucumber. Scientia Horticulturae 243:357−66

doi: 10.1016/j.scienta.2018.08.050
[60]

Wang SY, Camp MJ. 2000. Temperatures after bloom affect plant growth and fruit quality of strawberry. Scientia Horticulturae 85:183−99

doi: 10.1016/S0304-4238(99)00143-0