[1] |
Yan D, Duermeyer L, Leoveanu C, Nambara E. 2014. The functions of the endosperm during seed germination. Plant and Cell Physiology 55:1521−33 doi: 10.1093/pcp/pcu089 |
[2] |
Becraft PW, Gutierrez-Marcos J. 2012. Endosperm development: dynamic processes and cellular innovations underlying sibling altruism. Wiley Interdisciplinary Reviews Developmental Biology 1:579−93 doi: 10.1002/wdev.31 |
[3] |
Berger F, Grini PE, Schnittger A. 2006. Endosperm: an integrator of seed growth and development. Current Opinion in Plant Biology 9:664−70 doi: 10.1016/j.pbi.2006.09.015 |
[4] |
Batista RA, Figueiredo DD, Santos-González J, Köhler C. 2019. Auxin regulates endosperm cellularization in Arabidopsis. Genes & Development 33:466−76 doi: 10.1101/gad.316554.118 |
[5] |
Song J, Xie X, Chen C, Shu J, Thapa RK, et al. 2021. LEAFY COTYLEDON1 expression in the endosperm enables embryo maturation in Arabidopsis. Nature Communications 12:3963 doi: 10.1038/s41467-021-24234-1 |
[6] |
Dai D, Ma Z, Song R. 2021. Maize endosperm development. Journal of Integrative Plant Biology 63:613−27 doi: 10.1111/jipb.13069 |
[7] |
Strobbe S, Verstraete J, Stove C, Van Der Straeten D. 2021. Metabolic engineering of rice endosperm towards higher vitamin B1 accumulation. Plant Biotechnology Journal 19:1253−67 doi: 10.1111/pbi.13545 |
[8] |
McClintock B. 1987. Development of the maize endosperm as revealed by clones. In Genes, cells and organisms. The discovery and characterization of transposable elements, ed. Moore JA. New York: Garland Publishing. pp. 572–92 |
[9] |
Becraft PW, Yi G. 2011. Regulation of aleurone development in cereal grains. Journal of Experimental Botany 62:1669−75 doi: 10.1093/jxb/erq372 |
[10] |
Gao Y, An K, Guo W, Chen Y, Zhang R, et al. 2021. The endosperm-specific transcription factor TaNAC019 regulates glutenin and starch accumulation and its elite allele improves wheat grain quality. The Plant Cell 33:603−22 doi: 10.1093/plcell/koaa040 |
[11] |
Langenaeken NA, Ieven P, Hedlund EG, Kyomugasho C, van de Walle D, et al. 2020. Arabinoxylan, β-glucan and pectin in barley and malt endosperm cell walls: a microstructure study using CLSM and cryo-SEM. The Plant Journal 103:1477−89 doi: 10.1111/tpj.14816 |
[12] |
Dutt M. 1953. Dividing nuclei in coconut milk. Nature 171:799−800 doi: 10.1038/171799a0 |
[13] |
Cutter VM Jr, Wilson KS, Freeman B. 1955. Nuclear behavior and cell formation in the developing endosperm of cocos nucifera. American Journal of Botany 42:109−15 doi: 10.1002/j.1537-2197.1955.tb11100.x |
[14] |
Cutter VM Jr, Wilson KS, Dube GR. 1952. The isolation of living nuclei from the endosperm of Cocos nucifera. Science 115:58−59 doi: 10.1126/science.115.2977.58 |
[15] |
Liang Y, Yuan Y, Liu T, Mao W, Zheng Y, et al. 2014. Identification and computational annotation of genes differentially expressed in pulp development of Cocos nucifera L. by suppression subtractive hybridization. BMC Plant Biology 14:205 doi: 10.1186/s12870-014-0205-7 |
[16] |
Bajic M, Maher KA, Deal RB. 2018. Identification of Open Chromatin Regions in Plant Genomes Using ATAC-Seq. In Plant Chromatin Dynamics. Methods in Molecular Biology, eds. Bemer M, Baroux C. vol 1675. New York: Humana Press, NY. pp. 183−201 https://doi.org/10.1007/978-1-4939-7318-7_12 |
[17] |
Lu Z, Hofmeister BT, Vollmers C, DuBois RM, Schmitz RJ. 2017. Combining ATAC-seq with nuclei sorting for discovery of cis-regulatory regions in plant genomes. Nucleic Acids Research 45:e41 doi: 10.1093/nar/gkw1179 |
[18] |
Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. 2015. ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-Wide. Current Protocols in Molecular Biology 109:21.29.1−21.29.9 doi: 10.1002/0471142727.mb2129s109 |
[19] |
Patient RK, McGhee JD. 2002. The GATA family (vertebrates and invertebrates). Current Opinion in Genetics & Development 12:416−22 doi: 10.1016/S0959-437X(02)00319-2 |
[20] |
Schwechheimer C, Schröder PM, Blaby-Haas CE. 2022. Plant GATA factors: Their biology, phylogeny, and phylogenomics. Annual Review of Plant Biology 73:123−48 doi: 10.1146/annurev-arplant-072221-092913 |
[21] |
Hudson D, Guevara DR, Hand AJ, Xu Z, Hao L, et al. 2013. Rice cytokinin GATA transcription Factor1 regulates chloroplast development and plant architecture. Plant Physiology 162:132−44 doi: 10.1104/pp.113.217265 |
[22] |
Richter R, Behringer C, Müller IK, Schwechheimer C. 2010. The GATA-type transcription factors GNC and GNL/CGA1 repress gibberellin signaling downstream from DELLA proteins and PHYTOCHROME-INTERACTING FACTORS. Genes & Development 24:2093−104 doi: 10.1101/gad.594910 |
[23] |
Zhang H, Wu T, Li Z, Huang K, Kim NE, et al. 2021. OsGATA16, a GATA transcription factor, confers cold tolerance by repressing OsWRKY45-1 at the seedling stage in rice. Rice 14:42 doi: 10.1186/s12284-021-00485-w |
[24] |
Behringer C, Schwechheimer C. 2015. B-GATA transcription factors - insights into their structure, regulation, and role in plant development. Frontiers in Plant Science 6:90 doi: 10.3389/fpls.2015.00090 |
[25] |
Manzoor MA, Sabir IA, Shah IH, Wang H, Yu Z, et al. 2021. Comprehensive comparative analysis of the GATA transcription factors in four rosaceae species and phytohormonal response in Chinese Pear (Pyrus bretschneideri) fruit. International Journal of Molecular Sciences 22:12492 doi: 10.3390/ijms222212492 |
[26] |
He X, Chen GQ, Lin JT, McKeon TA. 2004. Regulation of diacylglycerol acyltransferase in developing seeds of castor. Lipids 39:865−71 doi: 10.1007/s11745-004-1308-1 |
[27] |
Ojha R, Kaur S, Sinha K, Chawla K, Kaur S, et al. 2021. Characterization of oleosin genes from forage sorghum in Arabidopsis and yeast reveals their role in storage lipid stability. Planta 254:97 doi: 10.1007/s00425-021-03744-8 |
[28] |
Huang AHC. 2018. Plant lipid droplets and their associated proteins: potential for rapid advances. Plant Physiology 176:1894−918 doi: 10.1104/pp.17.01677 |
[29] |
Lin LJ, Tai SSK, Peng CC, Tzen JTC. 2002. Steroleosin, a sterol-binding dehydrogenase in seed oil bodies. Plant Physiology 128:1200−11 doi: 10.1104/pp.010982 |
[30] |
Zale J, Jung JH, Kim JY, Pathak B, Karan R, et al. 2016. Metabolic engineering of sugarcane to accumulate energy-dense triacylglycerols in vegetative biomass. Plant Biotechnology Journal 14:661−69 doi: 10.1111/pbi.12411 |
[31] |
Zhai Z, Liu H, Shanklin J. 2021. Ectopic expression of OLEOSIN 1 and inactivation of GBSS1 have a synergistic effect on oil accumulation in plant leaves. Plants 10:513 doi: 10.3390/plants10030513 |
[32] |
Li DD, Fan YM. 2009. Cloning, characterisation, and expression analysis of an oleosin gene in coconut (Cocos nucifera L.) pulp. The Journal of Horticultural Science and Biotechnology 84:483−88 doi: 10.1080/14620316.2009.11512552 |
[33] |
Sun R, Gao L, Mi Z, Zheng Y, Li D. 2020. CnMADS1, a MADS transcription factor, positively modulates cell proliferation and lipid metabolism in the endosperm of coconut (Cocos nucifera L.). Planta 252:83 doi: 10.1007/s00425-020-03490-3 |
[34] |
Kim N, Moon SJ, Min MK, Choi EH, Kim JA, et al. 2015. Functional characterization and reconstitution of ABA signaling components using transient gene expression in rice protoplasts. Frontiers in Plant Science 6:614 doi: 10.3389/fpls.2015.00614 |
[35] |
Li S, Zhang Q, Jin Y, Zou J, Zheng Y, et al. 2020. A MADS-box gene, EgMADS21, negatively regulates EgDGAT2 expression and decreases polyunsaturated fatty acid accumulation in oil palm (Elaeis guineensis Jacq.). Plant Cell Reports 39:1506−16 doi: 10.1007/s00299-020-02579-z |
[36] |
Gietz RD, Schiestl RH, Willems AR, Woods RA. 1995. Studies on the transformation of intact yeast cells by the liac/SS-DNA/PEG procedure. Yeast 11:355−60 |