[1]

Seleiman MF, Al-Suhaibani N, Ali N, Akmal M, Alotaibi M, et al. 2021. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 10:259

doi: 10.3390/plants10020259
[2]

Zargar SM, Gupta N, Nazir M, Mahajan R, Malik FA, et al. 2017. Impact of drought on photosynthesis: Molecular perspective. Plant Gene 11:154−59

doi: 10.1016/j.plgene.2017.04.003
[3]

He F, Sheng M, Tang M. 2017. Effects of Rhizophagus irregularis on photosynthesis and antioxidative enzymatic system in Robinia pseudoacacia L. under drought stress. Frontiers in Plant Science 8:183

doi: 10.3389/fpls.2017.00183
[4]

Basu S, Ramegowda V, Kumar A, Pereira A. 2016. Plant adaptation to drought stress [version 1; referees: 3 approved]. F1000Research 5(F1000 Faculty Rev):1554

doi: 10.12688/f1000research.7678.1
[5]

Kariñho-Betancourt E, Agrawal AA, Halitschke R, Núñez-Farfán J. 2015. Phylogenetic correlations among chemical and physical plant defenses change with ontogeny. New Phytologist 206:796−806

doi: 10.1111/nph.13300
[6]

Wang X, Shen C, Meng P, Tan G, Lv L. 2021. Analysis and review of trichomes in plants. BMC Plant Biology 21:70

doi: 10.1186/s12870-021-02840-x
[7]

Zhong M, Jiang H, Cao Y, Wang Y, You C, et al. 2020. MdCER2 conferred to wax accumulation and increased drought tolerance in plants. Plant Physiology and Biochemistry 149:277−85

doi: 10.1016/j.plaphy.2020.02.013
[8]

Samuels L, Kunst L, Jetter R. 2008. Sealing plant surfaces: cuticular wax formation by epidermal cells. Annual Review of Plant Biology 59:683−707

doi: 10.1146/annurev.arplant.59.103006.093219
[9]

Bernard A, Domergue F, Pascal S, Jetter R, Renne C, et al. 2012. Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex. The Plant Cell 24:3106−18

doi: 10.1105/tpc.112.099796
[10]

Patwari P, Salewski V, Gutbrod K, Kreszies T, Dresen-Scholz B, et al. 2019. Surface wax esters contribute to drought tolerance in Arabidopsis. The Plant Journal 98:727−44

doi: 10.1111/tpj.14269
[11]

Wang Z, Tian X, Zhao Q, Liu Z, Li X, et al. 2018. The E3 Ligase DROUGHT HYPERSENSITIVE Negatively Regulates Cuticular Wax Biosynthesis by Promoting the Degradation of Transcription Factor ROC4 in Rice. The Plant Cell 30:228−44

doi: 10.1105/tpc.17.00823
[12]

Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, et al. 2017. Abscisic acid signaling and abiotic stress tolerance in plants: A review on current knowledge and future prospects. Frontiers in Plant Science 8:161

doi: 10.3389/fpls.2017.00161
[13]

Lim CW, Baek W, Jung J, Kim JH, Lee SC. 2015. Function of ABA in Stomatal Defense against Biotic and Drought Stresses. International Journal of Molecular Sciences 16:15251−70

doi: 10.3390/ijms160715251
[14]

Wang P, Song CP. 2008. Guard-cell signalling for hydrogen peroxide and abscisic acid. New Phytologist 178:703−18

doi: 10.1111/j.1469-8137.2008.02431.x
[15]

Flexas J, Ribas-Carbó M, Bota J, Galmés J, Henkle M, et al. 2006. Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration. New Phytologist 172:73−82

doi: 10.1111/j.1469-8137.2006.01794.x
[16]

Laxa M, Liebthal M, Telman W, Chibani K, Dietz KJ. 2019. The Role of the Plant Antioxidant System in Drought Tolerance. Antioxidants 8:94

doi: 10.3390/antiox8040094
[17]

Impa SM, Nadaradjan S, Jagadish SVK. 2012. Drought Stress Induced Reactive Oxygen Species and Anti-oxidants in Plants. In Abiotic Stress Responses in Plants, eds. Ahmad P, Prasad M. New York: Springer. pp. 131−47. https://doi.org/10.1007/978-1-4614-0634-1_7

[18]

Xin L, Zheng H, Yang Z, Guo J, Liu T, et al. 2018. Physiological and proteomic analysis of maize seedling response to water deficiency stress. Journal of Plant Physiology 228:29−38

doi: 10.1016/j.jplph.2018.05.005
[19]

Apel K, Hirt H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55:373−99

doi: 10.1146/annurev.arplant.55.031903.141701
[20]

Xiong H, Yu J, Miao J, Li J, Zhang H, et al. 2018. Natural Variation in OsLG3 Increases Drought Tolerance in Rice by Inducing ROS Scavenging. Plant Physiology 178:451−67

doi: 10.1104/pp.17.01492
[21]

Chun HJ, Lim LH, Cheong MS, Baek D, Park MS, et al. 2021. Arabidopsis CCoAOMT1 plays a role in drought stress response via ROS- and ABA-dependent manners. Plants 10:831

doi: 10.3390/plants10050831
[22]

Xiong J, Zhang W, Zheng D, Xiong H, Feng X, et al. 2022. ZmLBD5 increases drought sensitivity by suppressing ROS accumulation in Arabidopsis. Plants 11:1382

doi: 10.3390/plants11101382
[23]

Sharma A, Shahzad B, Kumar V, Kohli SK, Sidhu GPS, et al. 2019. Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9:285

doi: 10.3390/biom9070285
[24]

Gurrieri L, Merico M, Trost P, Forlani G, Sparla F. 2020. Impact of drought on soluble sugars and free proline content in selected Arabidopsis mutants. Biology 9:367

doi: 10.3390/biology9110367
[25]

Xu Y, Zhao X, Aiwaili P, Mu X, Zhao M, et al. 2020. A zinc finger protein BBX19 interacts with ABF3 to affect drought tolerance negatively in chrysanthemum. The Plant Journal 103:1783−95

doi: 10.1111/tpj.14863
[26]

Su J, Jiang J, Zhang F, Liu Y, Ding L, et al. 2019. Current achievements and future prospects in the genetic breeding of chrysanthemum: a review. Horticulture Research 6:109

doi: 10.1038/s41438-019-0193-8
[27]

Zhang C, Hong B, Li J, Gao J. 2005. A simple method to evaluate the drought tolerance of ground-cover chrysanthemum (Dentranthema × grandiflorum) rooted cuttings. Scientia Agricultura Sinica 38:789−96

doi: 10.3321/j.issn:0578-1752.2005.04.023
[28]

Galmés J, Flexas J, Savé R, Medrano H. 2007. Water relations and stomatal characteristics of Mediterranean plants with different growth forms and leaf habits: responses to water stress and recovery. Plant and Soil 290:139−55

doi: 10.1007/s11104-006-9148-6
[29]

He J, Chen F, Chen S, Lv G, Deng Y, et al. 2011. Chrysanthemum leaf epidermal surface morphology and antioxidant and defense enzyme activity in response to aphid infestation. Journal of Plant Physiology 168:687−93

doi: 10.1016/j.jplph.2010.10.009
[30]

Lee SB, Jung SJ, Go YS, Kim HU, Kim JK, et al. 2009. Two Arabidopsis 3-ketoacyl CoA synthase genes, KCS20 and KCS2/DAISY, are functionally redundant in cuticular wax and root suberin biosynthesis, but differentially controlled by osmotic stress. The Plant Journal 60:462−75

doi: 10.1111/j.1365-313X.2009.03973.x
[31]

Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248−54

doi: 10.1016/0003-2697(76)90527-3
[32]

Giannopolitis CN, Ries SK. 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol 59:309−14

doi: 10.1104/pp.59.2.309
[33]

Li H. 2000. Principles and Experimental Techniques of Plant Physiology and Biochemistry. First edition. Beijing: Higher Education Press

[34]

Beers RF Jr, Sizer IW. 1952. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. Journal of Biological Chemistry 195:133−40

doi: 10.1016/S0021-9258(19)50881-X
[35]

Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology 22:867−80

doi: 10.1093/oxfordjournals.pcp.a076232
[36]

Hu L, Wang Z, Du H, Huang B. 2010. Differential accumulation of dehydrins in response to water stress for hybrid and common bermudagrass genotypes differing in drought tolerance. Journal of Plant Physiology 167:103−9

doi: 10.1016/j.jplph.2009.07.008
[37]

Heath RL, Packer L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125:189−98

doi: 10.1016/0003-9861(68)90654-1
[38]

Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39:205−7

doi: 10.1007/BF00018060
[39]

Liu S, Chen S, Chen Y, Guan Z, Yin D, et al. 2011. In vitro induced tetraploid of Dendranthema nankingense (Nakai) Tzvel. shows an improved level of abiotic stress tolerance. Scientia Horticulturae 127:411−19

doi: 10.1016/j.scienta.2010.10.012
[40]

Ciha AJ, Brenner ML, Brun WA. 1977. Rapid separation and quantification of abscisic acid from plant tissues using high performance liquid chromatography. Plant Physiology 59:821−26

doi: 10.1104/pp.59.5.821
[41]

Guzzo MC, Costamagna C, Salloum MS, Rotundo JL, Monteoliva MI, et al. 2021. Morpho-physiological traits associated with drought responses in soybean. Crop Science 61:672−88

doi: 10.1002/csc2.20314
[42]

Al-Ashkar I, Al-Suhaibani N, Abdella K, Sallam M, Alotaibi M, et al. 2021. Combining genetic and multidimensional analyses to identify interpretive traits related to water shortage tolerance as an indirect selection tool for detecting genotypes of drought tolerance in wheat breeding. Plants 10:931

doi: 10.3390/plants10050931
[43]

Liu S, Jiao J, Lu T, Xu F, Pickard BG, et al. 2017. Arabidopsis leaf trichomes as acoustic antennae. Biophysical Journal 113:2068−76

doi: 10.1016/j.bpj.2017.07.035
[44]

Fich EA, Fisher J, Zamir D, Rose JKC. 2020. Transpiration from tomato fruit occurs primarily via trichome-associated transcuticular polar pores. Plant Physiology 184:1840−52

doi: 10.1104/pp.20.01105
[45]

Zhang Y, Song H, Wang X, Zhou X, Zhang K, et al. 2020. The roles of different types of trichomes in tomato resistance to cold, drought, whiteflies, and botrytis. Agronomy 10:411

doi: 10.3390/agronomy10030411
[46]

Lewandowska M, Keyl A, Feussner I. 2020. Wax biosynthesis in response to danger: its regulation upon abiotic and biotic stress. New Phytologist 227:698−713

doi: 10.1111/nph.16571
[47]

Ahmad HM, Wang X, Mahmood-Ur-Rahman, Fiaz S, Azeem F, et al. 2021. Morphological and physiological response of Helianthus annuus L. to drought stress and correlation of wax contents for drought tolerance traits. Arabian Journal for Science and Engineering 47:6747−61

doi: 10.1007/s13369-021-06098-1
[48]

Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA. 2009. Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development 29:185−212

doi: 10.1051/agro:2008021
[49]

Gill SS, Anjum NA, Gill R, Yadav S, Hasanuzzaman M, et al. 2015. Superoxide dismutase—mentor of abiotic stress tolerance in crop plants. Environmental Science and Pollution Research 22:10375−94

doi: 10.1007/s11356-015-4532-5
[50]

Wang X, Liu H, Yu F, Hu B, Jia Y, et al. 2019. Differential activity of the antioxidant defence system and alterations in the accumulation of osmolyte and reactive oxygen species under drought stress and recovery in rice (Oryza sativa L.) tillering. Scientific Reports 9:8543

doi: 10.1038/s41598-019-44958-x
[51]

Iqbal N, Hussain S, Raza MA, Yang CQ, Safdar ME, et al. 2019. Drought tolerance of soybean (Glycine max L. Merr.) by improved photosynthetic characteristics and an efficient antioxidant enzyme activities under a split-root system. Frontiers in Physiology 10:786

doi: 10.3389/fphys.2019.00786
[52]

Yang Z, Chi X, Guo F, Jin X, Luo H, et al. 2020. SbWRKY30 enhances the drought tolerance of plants and regulates a drought stress-responsive gene, SbRD19, in sorghum. Journal of Plant Physiology 246−247:153142

doi: 10.1016/j.jplph.2020.153142
[53]

Sadak MS, Abdalla AM, Abd Elhamid EM, Ezzo MI. 2020. Role of melatonin in improving growth, yield quantity and quality of Moringa oleifera L. plant under drought stress. Bulletin of the National Research Centre 44:18

doi: 10.1186/s42269-020-0275-7
[54]

Sallam A, Alqudah AM, Dawood MFA, Baenziger PS, Börner A. 2019. Drought stress tolerance in wheat and barley: Advances in physiology, breeding and genetics research. International Journal of Molecular Sciences 20:3137

doi: 10.3390/ijms20133137
[55]

Ayenan MAT, Danquah A, Hanson P, Ampomah-Dwamena C, Sodedji FAK, et al. 2019. Accelerating breeding for heat tolerance in tomato (Solanum lycopersicum L.): An integrated approach. Agronomy 9:720

doi: 10.3390/agronomy9110720
[56]

Banavath JN, Chakradhar T, Pandit V, Konduru S, Guduru KK, et al. 2018. Stress inducible overexpression of AtHDG11 leads to improved drought and salt stress tolerance in peanut (Arachis hypogaea L.). Frontiers in Chemistry 6:34

doi: 10.3389/fchem.2018.00034
[57]

Trovato M, Mattioli R, Costantino P. 2008. Multiple roles of proline in plant stress tolerance and development. Rendiconti Lincei 19:325−46

doi: 10.1007/s12210-008-0022-8
[58]

Dien DC, Mochizuki T, Yamakawa T. 2019. Effect of various drought stresses and subsequent recovery on proline, total soluble sugar and starch metabolisms in Rice (Oryza sativa L.) varieties. Plant Production Science 22:530−45

doi: 10.1080/1343943X.2019.1647787
[59]

Kaur G, Asthir B. 2015. Proline: a key player in plant abiotic stress tolerance. Biologia Plantarum 59:609−19

doi: 10.1007/s10535-015-0549-3
[60]

Zhang A, Liu M, Gu W, Chen Z, Gu Y, et al. 2021. Effect of drought on photosynthesis, total antioxidant capacity, bioactive component accumulation, and the transcriptome of Atractylodes lancea. BMC Plant Biology 21:293

doi: 10.1186/s12870-021-03048-9
[61]

Christmann A, Weiler EW, Steudle E, Grill E. 2007. A hydraulic signal in root-to-shoot signalling of water shortage. The Plant Journal 52:167−74

doi: 10.1111/j.1365-313X.2007.03234.x
[62]

Lawlor DW, Tezara W. 2009. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Annals of Botany 103:561−79

doi: 10.1093/aob/mcn244
[63]

Lawson T, Vialet-Chabrand S. 2019. Speedy stomata, photosynthesis and plant water use efficiency. New Phytologist 221:93−98

doi: 10.1111/nph.15330
[64]

Lawson T, Blatt MR. 2014. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiology 164:1556−70

doi: 10.1104/pp.114.237107
[65]

Schulze WX, Altenbuchinger M, He M, Kränzlein M, Zörb C. 2021. Proteome profiling of repeated drought stress reveals genotype-specific responses and memory effects in maize. Plant Physiology and Biochemistry 159:67−79

doi: 10.1016/j.plaphy.2020.12.009
[66]

Galle A, Florez-Sarasa I, Thameur A, De Paepe R, Flexas J, et al. 2010. Effects of drought stress and subsequent rewatering on photosynthetic and respiratory pathways in Nicotiana sylvestris wild type and the mitochondrial complex I−deficient CMSII mutant. Journal of Experimental Botany 61:765−75

doi: 10.1093/jxb/erp344
[67]

Ennahli S, Earl HJ. 2005. Physiological limitations to photosynthetic carbon assimilation in cotton under water stress. Crop Science 45:2374−82

doi: 10.2135/cropsci2005.0147
[68]

Zhou Q, Yu B. 2010. Changes in content of free, conjugated and bound polyamines and osmotic adjustment in adaptation of vetiver grass to water deficit. Plant Physiology and Biochemistry 48:417−25

doi: 10.1016/j.plaphy.2010.03.003
[69]

Wang Y, Zhang X, Huang G, Feng F, Liu X, et al. 2020. Dynamic changes in membrane lipid composition of leaves of winter wheat seedlings in response to PEG-induced water stress. BMC Plant Biology 20:84

doi: 10.1186/s12870-020-2257-1
[70]

Flexas J, Medrano H. 2002. Drought - Inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Annals of Botany 89:183−9

doi: 10.1093/aob/mcf027
[71]

Salim Akhter M, Noreen S, Mahmood S, Athar HUR, Ashraf M, et al. 2021. Influence of salinity stress on PSII in barley (Hordeum vulgare L.) genotypes, probed by chlorophyll-a fluorescence. Journal of King Saud University - Science 33:101239

doi: 10.1016/j.jksus.2020.101239
[72]

Ali B, Umar M, Azeem M, Uddin Z, Siddiqui ZS. 2022. Salt tolerance screening of a newly developed wheat variety (AZRC-DK-84) in saline environment using halophytic grass (Cenchrus penisettiformis) as a test model. Acta Physiologiae Plantarum 44:81

doi: 10.1007/s11738-022-03421-7
[73]

Wei Y, Chen H, Wang L, Zhao Q, Wang D, et al. 2022. Cold acclimation alleviates cold stress-induced PSII inhibition and oxidative damage in tobacco leaves. Plant Signal Behav 17:2013638

doi: 10.1080/15592324.2021.2013638
[74]

Farquhar GD, Ehleringer JR, Hubick KT. 1989. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 40:503−37

doi: 10.1146/annurev.pp.40.060189.002443
[75]

D'Alessandro S, Beaugelin I, Havaux M. 2020. Tanned or sunburned: How excessive light triggers plant cell death. Molecular Plant 13:1545−55

doi: 10.1016/j.molp.2020.09.023
[76]

Afshar Mohamadian A, Omidipour M, Jamal Omidi F. 2018. Effect of different drought stress levels on content and chlorophyll fluorescence indices of two bean cultivars (Phaseolus vulgaris L.). Journal of Plant Research 31:511−25

[77]

Hlahla JM, Mafa MS, van der Merwe R, Alexander O, Duvenhage MM, et al. 2022. The photosynthetic efficiency and carbohydrates responses of six edamame (Glycine max. L. Merrill) cultivars under drought stress. Plants 11:394

doi: 10.3390/plants11030394
[78]

Jogawat A, Yadav B, Chhaya, Lakra N, Singh AK, Narayan OP. 2021. Crosstalk between phytohormones and secondary metabolites in the drought stress tolerance of crop plants: A review. Physiologia Plantarum 172:1106−32

doi: 10.1111/ppl.13328
[79]

Santosh Kumar VV, Yadav SK, Verma RK, Shrivastava S, Ghimire O, et al. 2021. The abscisic acid receptor OsPYL6 confers drought tolerance to indica rice through dehydration avoidance and tolerance mechanisms. Journal of Experimental Botany 72:1411−31

doi: 10.1093/jxb/eraa509
[80]

Mahdid M, Kameli A, Ehlert C, Simonneau T. 2011. Rapid changes in leaf elongation, ABA and water status during the recovery phase following application of water stress in two durum wheat varieties differing in drought tolerance. Plant Physiology and Biochemistry 49:1077−83

doi: 10.1016/j.plaphy.2011.08.002
[81]

Parent B, Hachez C, Redondo E, Simonneau T, Chaumont F, et al. 2009. Drought and abscisic acid effects on aquaporin content translate into changes in hydraulic conductivity and leaf growth rate: a trans-scale approach. Plant Physiology 149:2000−12

doi: 10.1104/pp.108.130682
[82]

Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. 2010. Abscisic acid: emergence of a core signaling network. Annu. Rev. Plant Biol 61:651−79

doi: 10.1146/annurev-arplant-042809-112122
[83]

Verslues PE, Bray EA. 2006. Role of abscisic acid (ABA) and Arabidopsis thaliana ABA−insensitive loci in low water potential−induced ABA and proline accumulation. Journal of Experimental Botany 57:201−12

doi: 10.1093/jxb/erj026
[84]

Urano K, Maruyama K, Ogata Y, Morishita Y, Takeda M, et al. 2009. Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics. The Plant Journal 57:1065−78

doi: 10.1111/j.1365-313x.2008.03748.x
[85]

Cao X, Wu L, Wu M, Zhu C, Jin Q, Zhang J. 2020. Abscisic acid mediated proline biosynthesis and antioxidant ability in roots of two different rice genotypes under hypoxic stress. BMC Plant Biology 20:198

doi: 10.1186/s12870-020-02414-3