[1]

Liu X, Huang B. 2008. Photosynthetic acclimation to high temperatures associated with heat tolerance in creeping bentgrass. Journal of Plant Physiology 165:1947−53

doi: 10.1016/j.jplph.2008.05.001
[2]

Liu X, Huang B. 2003. Mowing height effects on summer turf growth and physiological activities for two creeping bentgrass cultivars. HortScience 38:444−48

doi: 10.21273/HORTSCI.38.3.444
[3]

Huang B, Dacosta M, Jiang Y. 2014. Research advances in mechanisms of turfgrass tolerance to abiotic stresses: From physiology to molecular biology. Critical Reviews in Plant Sciences 33:141−89

doi: 10.1080/07352689.2014.870411
[4]

Rossi S, Burgess P, Jespersen D, Huang B. 2017. Heat-induced leaf senescence associated with chlorophyll metabolism in bentgrass lines differing in heat tolerance. Crop Science 57:S169−S178

doi: 10.2135/cropsci2016.06.0542
[5]

Rachmilevitch S, Lambers H, Huang B. 2008. Short-term and long-term root respiratory acclimation to elevated temperatures associated with root thermotolerance for two Agrostis grass species. Journal of Experimental Botany 59:3803−9

doi: 10.1093/jxb/ern233
[6]

Xu Y, Burgess P, Huang B. 2015. Root antioxidant mechanisms in relation to root thermotolerance in perennial grass species contrasting in heat tolerance. PLoS One 10:e138268

doi: 10.1371/journal.pone.0138268
[7]

Fan J, Zhang W, Amombo E, Hu L, Kjorven J, et al. 2020. Mechanisms of environmental stress tolerance in turfgrass. Agronomy 10:522

doi: 10.3390/agronomy10040522
[8]

Sun Y, Zhang Y. 2011. A study on heat tolerance of five cold-season turfgrasses. Pratacultural Science 28:1909−14

[9]

Xu Q, Huang B. 2001. Morphological and physiological characteristics associated with heat tolerance in creeping bentgrass. Crop Science 41:127−33

doi: 10.2135/cropsci2001.411127x
[10]

Huang B, Xu Q. 2000. Root growth and nutrient element status of creeping bentgrass cultivars differing in heat tolerance as influenced by supraoptimal shoot and root temperatures. Journal of Plant Nutrition 23:979−90

doi: 10.1080/01904160009382075
[11]

Xu S, Li J, Zhang X, Wei H, Cui L. 2006. Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environmental and Experimental Botany 56:274−85

doi: 10.1016/j.envexpbot.2005.03.002
[12]

Fan Z, Song G, Chen J, Tang B, Dou W, et al. 2022. Effects of ground temperature regulation on the soil temperature, quality, and root growth of bentgrass turf under heat stress. Pratacultural Science 39:1−9

doi: 10.11829/j.issn.1001-0629.2021-0449
[13]

Li Z, Peng Y, Huang B. 2016. Physiological effects of γ-aminobutyric acid application on improving heat and drought tolerance in creeping bentgrass. Journal of the American Society for Horticultural Science 141:76−84

doi: 10.21273/JASHS.141.1.76
[14]

Hidangmayum A, Dwivedi P, Katiyar D, Hemantaranjan A. 2019. Application of chitosan on plant responses with special reference to abiotic stress. Physiology and Molecular Biology of Plants 25:313−26

doi: 10.1007/s12298-018-0633-1
[15]

Malerba M, Cerana R. 2016. Chitosan effects on plant systems. International Journal of Molecular Sciences 17:996

doi: 10.3390/ijms17070996
[16]

Kananont N, Pichyangkura R, Chanprame S, Chadchawan S, Limpanavech P. 2010. Chitosan specificity for the in vitro seed germination of two Dendrobium orchids (Asparagales: Orchidaceae). Scientia Horticulturae 124:239−47

doi: 10.1016/j.scienta.2009.11.019
[17]

Emami Bistgani Z, Siadat SA, Bakhshandeh A, Ghasemi Pirbalouti A, Hashemi M. 2017. Interactive effects of drought stress and chitosan application on physiological characteristics and essential oil yield of Thymus daenensis Celak. The Crop Journal 5:407−15

doi: 10.1016/j.cj.2017.04.003
[18]

Zhang P, Jia H, Gong P, Sadeghnezhad E, Pang Q, et al. 2021. Chitosan induces jasmonic acid production leading to resistance of ripened fruit against Botrytis cinerea infection. Food Chemistry 337:127772

doi: 10.1016/j.foodchem.2020.127772
[19]

El-Serafy RS. 2020. Phenotypic plasticity, biomass allocation, and biochemical analysis of cordyline seedlings in response to oligo-chitosan foliar spray. Journal of Soil Science and Plant Nutrition 20:1503−14

doi: 10.1007/s42729-020-00229-7
[20]

Safikhan S, Khoshbakht K, Chaichi MR, Amini A, Motesharezadeh B. 2018. Role of chitosan on the growth, physiological parameters and enzymatic activity of milk thistle (Silybum marianum (L.) Gaertn.) in a pot experiment. Journal of Applied Research on Medicinal and Aromatic Plants 10:49−58

doi: 10.1016/j.jarmap.2018.06.002
[21]

Li Y, Zhang Q, Ou L, Ji D, Liu T, et al. 2020. Response to the cold stress signaling of the tea plant (Camellia sinensis) elicited by chitosan oligosaccharide. Agronomy 10:915

doi: 10.3390/agronomy10060915
[22]

Pongprayoon W, Maksup S, Phaonakrop N, Jaresitthikunchai J, Uawisetwathana U, et al. 2022. Phosphoproteome analysis reveals chitosan-induced resistance to osmotic stress in rice (Oryza sativa L) seedlings. Journal of plant interactions 17:894−910

doi: 10.1080/17429145.2022.2114556
[23]

Zhang Y, Li Z, Li Y, Zhang X, Ma X, et al. 2018. Chitosan and spermine enhance drought resistance in white clover, associated with changes in endogenous phytohormones and polyamines, and antioxidant metabolism. Functional Plant Biology 45:1205−22

doi: 10.1071/FP18012
[24]

Turk H. 2019. Chitosan-induced enhanced expression and activation of alternative oxidase confer tolerance to salt stress in maize seedlings. Plant Physiology and Biochemistry 141:415−22

doi: 10.1016/j.plaphy.2019.06.025
[25]

Geng W, Li Z, Hassan MJ, Peng Y. 2020. Chitosan regulates metabolic balance, polyamine accumulation, and Na+ transport contributing to salt tolerance in creeping bentgrass. BMC Plant Biology 20:506

doi: 10.1186/s12870-020-02720-w
[26]

Qian YL, Engelke MC, Foster MJV, Reynolds S. 1998. Trinexapac-ethyl restricts shoot growth and improves quality of ‘Diamond’ zoysiagrass under shade. HortScience 33:1019−22

doi: 10.21273/HORTSCI.33.6.1019
[27]

Wang X, Huang W, Liu J, Yang Z, Huang B. 2017. Molecular regulation and physiological functions of a novel FaHsfA2c cloned from tall fescue conferring plant tolerance to heat stress. Plant Biotechnology Journal 15:237−48

doi: 10.1111/pbi.12609
[28]

Blum A, Ebercon A. 1981. Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Science 21:43−47

doi: 10.2135/cropsci1981.0011183X002100010013x
[29]

Xu L, Han L, Huang B. 2011. Antioxidant enzyme activities and gene expression patterns in leaves of Kentucky bluegrass in response to drought and post-drought recovery. Journal of the American Society for Horticultural Science 136:247−55

doi: 10.21273/JASHS.136.4.247
[30]

Katuwal KB, Rowe S, Jespersen D. 2021. The use of 5-aminolevulinic acid to reduce heat-stress-related damages in tall fescue. Crop Science 61:3206−18

doi: 10.1002/csc2.20294
[31]

Zhang Y, Du H. 2016. Differential accumulation of proteins in leaves and roots associated with heat tolerance in two Kentucky bluegrass genotypes differing in heat tolerance. Acta Physiologiae Plantarum 38:213

doi: 10.1007/s11738-016-2232-5
[32]

Hu L, Bi A, Hu Z, Amombo E, Li H, et al. 2018. Antioxidant metabolism, photosystem II, and fatty acid composition of two tall fescue genotypes with different heat tolerance under high temperature stress. Frontiers in Plant Science 9:1242

doi: 10.3389/fpls.2018.01242
[33]

He Y, Liu X, Huang B. 2005. Changes in protein content, protease activity, and amino acid content associated with heat injury in creeping bentgrass. Journal of the American Society for Horticultural Science 130:842−47

doi: 10.21273/JASHS.130.6.842
[34]

Xu Y, Du H, Huang B. 2013. Identification of metabolites associated with superior heat tolerance in thermal bentgrass through metabolic profiling. Crop Science 53:1626−35

doi: 10.2135/cropsci2013.01.0045
[35]

Wang Q, Wang K, Yu J, Yang Z. 2020. Effects of LBD on improving heat tolerance in creeping bentgrass. Pratacultural Science 37:1066−73

doi: 10.11829/j.issn.1001-0629.2019-0535
[36]

Li S, Luo J, Chen C, Xiang Z, Hu L. 2020. Effects of primo on heat tolerance and turf characters in perennial ryegrass. Acta Agrestia Sinica 28:1006−14

doi: 10.11733/j.issn.1007-0435.2020.04.018
[37]

Zhang X, Li K, Xing R, Liu S, Chen X, et al. 2018. miRNA and mRNA expression profiles reveal insight into chitosan-mediated regulation of plant growth. Journal of Agricultural and Food Chemistry 66:3810−22

doi: 10.1021/acs.jafc.7b06081
[38]

Dzung NA, Khanh VTP, Dzung TT. 2011. Research on impact of chitosan oligomers on biophysical characteristics, growth, development and drought resistance of coffee. Carbohydrate Polymers 84:751−755

doi: 10.1016/j.carbpol.2010.07.066
[39]

Liu Z, Liu T, Liang L, Li Z, Hassan MJ, et al. 2020. Enhanced photosynthesis, carbohydrates, and energy metabolism associated with chitosan-induced drought tolerance in creeping bentgrass. Crop Science 60:1064−76

doi: 10.1002/csc2.20026
[40]

Younas HS, Abid M, Ashraf M, Shaaban M. 2022. Growth, yield and physiological characteristics of maize (Zea mays L.) at two different soil moisture regimes by supplying silicon and chitosan. Silicon 14:2509−19

doi: 10.1007/s12633-021-01033-3
[41]

NO HK, Lee KS, Kim ID, Park MJ, Kim SD, et al. 2003. Chitosan treatment affects yield, ascorbic acid content, and hardness of soybean sprouts. Journal of Food Science 68:680−85

doi: 10.1111/j.1365-2621.2003.tb05731.x
[42]

Muley AB, Shingote PR, Patil AP, Dalvi SG, Suprasanna P. 2019. Gamma radiation degradation of chitosan for application in growth promotion and induction of stress tolerance in potato (Solanum tuberosum L.). Carbohydrate Polymers 210:289−301

doi: 10.1016/j.carbpol.2019.01.056
[43]

Petricka JJ, Winter CM, Benfey PN. 2012. Control of Arabidopsis root development. Annual Review of Plant Biology 63:563−90

doi: 10.1146/annurev-arplant-042811-105501
[44]

Hu L, Zhang Z, Xiang Z, Yang Z. 2016. Exogenous application of citric acid ameliorates the adverse effect of heat stress in tall fescue (Lolium arundinaceum). Frontiers in Plant Science 7:179

doi: 10.3389/fpls.2016.00179
[45]

Jiang Y, Huang B. 2001. Physiological responses to heat stress alone or in combination with drought: A comparison between tall fescue and perennial ryegrass. HortScience 36:682−86

doi: 10.21273/HORTSCI.36.4.682
[46]

Qu D, Zhang L, Gu W, Cao X, Fan H, et al. 2017. Effects of chitosan on root growth and leaf photosynthesis of maize seedlings under cadmium stress. Chinese Journal of Ecology 36:1300−9

doi: 10.13292/J.1000-4890.201705.011
[47]

Zeng W, Hassan MJ, Kang D, Peng Y, Li Z. 2021. Photosynthetic maintenance and heat shock protein accumulation relating to γ-aminobutyric acid (GABA)-regulated heat tolerance in creeping bentgrass (Agrostis stolonifera). South African Journal of Botany 141:405−13

doi: 10.1016/j.sajb.2021.05.028
[48]

Mirajkar SJ, Dalvi SG, Ramteke SD, Suprasanna P. 2019. Foliar application of gamma radiation processed chitosan triggered distinctive biological responses in sugarcane under water deficit stress conditions. International Journal of Biological Macromolecules 139:1212−23

doi: 10.1016/j.ijbiomac.2019.08.093
[49]

Niu Y, Xiang Y. 2018. An overview of biomembrane functions in plant responses to high-temperature stress. Frontiers in Plant Science 9:915

doi: 10.3389/fpls.2018.00915
[50]

Zong H, Liu S, Xing R, Chen X, Li P. 2017. Protective effect of chitosan on photosynthesis and antioxidative defense system in edible rape (Brassica rapa L.) in the presence of cadmium. Ecotoxicology and Environmental Safety 138:271−78

doi: 10.1016/j.ecoenv.2017.01.009