[1]

Ritenour MA, Albrigo LG, Burns JK, Miller WM. 2004. Granulation in Florida citrus. Proceedings Florida State Horticulture Society 117:358−61

[2]

Bartholomew E, Sinclair W, Raby E. 1934. Granulation (crystallization) of Valencia oranges. California Citrogrower 19:88−89

[3]

Wu J, Pan T, Guo Z, Pan D. 2014. Specific lignin accumulation in granulated juice sacs of Citrus maxima. Journal of Agricultural and Food Chemistry 62:12082−89

doi: 10.1021/jf5041349
[4]

Singh R. 2001. 65-year research on citrus granulation. Indian Journal Horticulture 58:112−44

[5]

Shomer I, Chalutz E, Vasiliver R, Lomaniec E, Berman M. 1989. Scierification of juice sacs in pummelo (Citrus grandis) fruit. Canadian Journal Botany 67:625−32

doi: 10.1139/b89-084
[6]

Xie Z, Zhuang Y, Wang R, Xu W, Huang Y. 1998. Granulation and dehiscent segments of Guan Honey Pomelo fruits and their correlation to mineral nutrients. Journal of Fujian Agricultural University 27:42−46

[7]

Zheng Y. 2006. Recent situation and prospect of juice sac granulation for Guanxi honey pomelo fruits. Fujian Journal of Agricultural Science 21:63−65

doi: 10.19303/j.issn.1008-0384.2006.01.017
[8]

Wang X, Wang P, Qi Y, Zhou C, Yang L, et al. 2014. Effects of granulation on organic acid metabolism and its relation to mineral elements in Citrus grandis juice sacs. Food Chemistry 145:984−90

doi: 10.1016/j.foodchem.2013.09.021
[9]

Munshi SK, Jawanda JS, Singh R, Vij V. 1980. Studies on mineral composition of fruits in relation to severity of granulation in Dancy tangerine. Indian Journal Horticulture 37:20−25

[10]

Munshi SK, Singh R, Vij VK, and Jawanda JS. 1978. Mineral composition of leaves in relation to degree of granulation in sweet orange. Scientia Horticulturae 9:357−67

doi: 10.1016/0304-4238(78)90045-6
[11]

Sinclair WB, Jolliffe VA. 1961. Chemical changes in the juice vesicles of granulated valencia oranges. Journal Food Science 26:276−82

doi: 10.1111/j.1365-2621.1961.tb01654.x
[12]

Ladanyia M. 2008. Citrus Fruit: Biology, Technology and Evaluation. USA: Elsevier publications. pp. 440–46

[13]

Sharma RR, Saxena SK. 2004. Rootstocks influence granulation in 'Kinnow' mandarin (Citrus nobilis × C. deliciosa). Scientia Horticulturae 101:235−42

doi: 10.1016/j.scienta.2003.10.010
[14]

Xu Y. 2014. Cloning and expression of lignin genes in Citrus maxima (Burm.) Merr. Thesis. Fujian Agriculture and Forestry University, Fuzhou, China.

[15]

Awasthi RP, Nauriyal JP. 1972. Studies on granulation in sweet orange. IV. Physical characteristics of granulated and non-granulated fruits. Indian Journal Horticulture 29:40−44

[16]

Sharma RR, Awasthi OP, Kumar K. 2016. Pattern of phenolic content, antioxidant activity and senescence-related enzymes in granulated vs non-granulated juice-sacs of ‘Kinnow’ mandarin (Citrus nobilis × C. deliciosa). Journal of Food Science and Technology 53:1525−30

doi: 10.1007/s13197-015-2112-9
[17]

Galimba KD, Bullock DG, Dardick C, Liu Z, Callahan AM. 2019. Gibberellic acid induced parthenocarpic. 'Honeycrisp' apples (Malus domestica) exhibit reduced ovary width and lower acidity. Horticulture Research 6:41

doi: 10.1038/s41438-019-0124-8
[18]

Verma V, Ravindran P, Kumar PP. 2016. Plant hormone-mediated regulation of stress responses. BMC Plant Biology 16:86

doi: 10.1186/s12870-016-0771-y
[19]

Hampton SE, Dore TM, Schmit WK. 2018. Rce1: Mechanism and inhibition. Critical Reviews in Biochemistry and Molecular Biology 53:157−74

doi: 10.1080/10409238.2018.1431606
[20]

Gao Z, Wang Y, Chen G, Zhang A, Yang S, et al. 2019. The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency. Nature Communications 10:5207

doi: 10.1038/s41467-019-13110-8
[21]

Hahn A, Vonck J, Mills DJ, Meier T, and Kühlbrandt W. 2018. Structure, Mechanism, and Regulation of the Chloroplast ATP Synthase. Science 360:6389

doi: 10.1126/science.aat4318
[22]

Chen C, Peng X, Chen J, Gan Z, Wan C. 2021. Mitigating effects of chitosan coating on postharvest senescence and energy depletion of harvested pummelo fruit response to granulation stress. Food Chemistry 348:129113

doi: 10.1016/j.foodchem.2021.129113
[23]

Li Q, Yao S, Deng L, Zeng K. 2021. Changes in biochemical properties and pectin nanostructures of juice sacs during the granulation process of pomelo fruit (Citrus grandis). Food Chemistry 376:131876

doi: 10.1016/j.foodchem.2021.131876
[24]

Suzuki S, Li L, Sun YH, Chiang VL. 2006. The cellulose synthase gene superfamily and biochemical functions of xylem-specific cellulose synthase-like genes in Populus trichocarpa. Plant Physiology 142:1233−45

doi: 10.1104/pp.106.086678
[25]

Zhang H, Dou W, Jiang CC, Wei Z, Liu J, et al. 2010. Hydrogen sulfide stimulates β-amylase activity during early stages of wheat grain germination. Plant signaling & Behavior 5:1031−33

doi: 10.4161/psb.5.8.12297
[26]

Chen C, Nie Z, Wan C, Gan Z, Chen J. 2021. Suppression on postharvest juice sac granulation and cell wall modification by chitosan treatment in harvested pummelo (Citrus grandis L. Osbeck) stored at room temperature. Food Chemistry 336:127636

doi: 10.1016/j.foodchem.2020.127636
[27]

Nguyen Dinh S, Sai TZT, Nawaz G, Lee K, Kang H. 2016. Abiotic stresses affect differently the intron splicing and expression of chloroplast genes in coffee plants (Coffea arabica) and rice (Oryza sativa). Journal of Plant Physiology 201:85−94

doi: 10.1016/j.jplph.2016.07.004
[28]

Matsui A, Nakaminami K, Seki M. 2019. Biological function of changes in RNA metabolism in plant adaptation to abiotic stress. Plant and Cell Physiology 60:1897−905

doi: 10.1093/pcp/pcz068
[29]

Raabe K, Honys D, Michailidis C. 2019. The role of eukaryotic initiation factor 3 in plant translation regulation. Plant Physiology and Biochemistry 145:75−83

doi: 10.1016/j.plaphy.2019.10.015
[30]

Chen Y, Liu L, Shen Y, Liu S, Huang J, et al. 2015. Loss of function of the cytochrome P450 gene CYP78B5 causes giant embryos in rice. Plant Molecular Biology Reporter 33:69−83

doi: 10.1007/s11105-014-0731-3
[31]

Narusaka Y, Narusaka M, Seki M, Umezawa T, Ishida J, et al. 2004. Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis: Analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray. Plant Molecular Biology 55:327−42

doi: 10.1007/s11103-004-0685-1
[32]

Wu H, Li B, Iwakawa HO, Pan Y, Tang X, et al. 2020. Plant 22-nt siRNAs mediate translational repression and stress adaptation. Nature 581:89−93

doi: 10.1038/s41586-020-2231-y
[33]

Hussain MD, Farooq T, Chen X, Tariqjaveed M, Jiang T, et al. 2021. Viral suppressors from members of the family Closteroviridae combating antiviral RNA silencing: a tale of a sophisticated armsrace in host pathogen interactions. Phytopathology Research 3:27

doi: 10.1186/s42483-021-00104-y
[34]

Jacob P, Hirt H, Bendahmane A. 2017. The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnology Journal 15:405−14

doi: 10.1111/pbi.12659
[35]

Lu Y, Qi Y, Yang L, Lee J, Guo P, et al. 2015. Long-term boron-deficiency-responsive genes revealed by cDNA-AFLP differ between Citrus sinensis roots and leaves. Frontiers in Plant Science 6:585

doi: 10.3389/fpls.2015.00585
[36]

Li Z, Wu L, Wang C, Wang Y, He L, et al. 2022. Characterization of pectin methylesterase gene family and its possible role in juice sac granulation in navel orange (Citrus sinensis Osbeck). BMC Genomics 23:185

doi: 10.1186/s12864-022-08411-0
[37]

Xiao D, Liu S, Wei Y, Zhou D, Hou X, et al. 2016. cDNA-AFLP analysis reveals differential gene expression in incompatible interaction between infected non-heading Chinese cabbage and Hyaloperonospora parasitica. Horticulture Research 3:16034

doi: 10.1038/hortres.2016.34
[38]

Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29:e45

doi: 10.1093/nar/29.9.e45