[1]

Lea PJ, Morot-Gaudry JF. (Eds. ). 2001. Plant nitrogen. Springer Science and Business Media.

[2]

Ohyama T. 2010. Nitrogen as a major essential element of plants. Nitrogen in Plants 37:2−17

[3]

Viktor A, Cramer MD. 2005. The influence of root assimilated inorganic carbon on nitrogen acquisition/assimilation and carbon partitioning. New Phytologist 165:157−69

doi: 10.1111/j.1469-8137.2004.01204.x
[4]

Zhao C, Liu Q. 2009. Growth and physiological responses of Picea asperata seedlings to elevated temperature and to nitrogen fertilization. Acta Physiologiae Plantarum 31:163

doi: 10.1007/s11738-008-0217-8
[5]

Jackson LE, Burger M, Cavagnaro TR. 2008. Roots, nitrogen transformations, and ecosystem services. Annual Review of Plant Biology 59:341−63

doi: 10.1146/annurev.arplant.59.032607.092932
[6]

Patterson K, Cakmak T, Cooper A, Lager I, Rasmusson AG, et al. 2010. Distinct signalling pathways and transcriptome response signatures differentiate ammonium-and nitrate-supplied plants. Plant Cell and Environment 33:1486−501

doi: 10.1111/j.1365-3040.2010.02158.x
[7]

Bloom A. J. 1997. Nitrogen as a Limiting Factor: Crop Acquisition of Ammonium and Nitrate. In Ecology in Agriculture, ed. Jackson LE. UK: Academic Press, Elsevier. pp. 145−72. https://doi.org/10.1016/B978-012378260-1/50006-3

[8]

Noctor G, Foyer Ch. 1998. A re-evaluation of the ATP: NADPH budget during C3 photosynthesis: a contribution from nitrate assimilation and its associated respiratory activity? Journal of Experimental Botany 49:1895−908

doi: 10.1093/jxb/49.329.1895
[9]

Marini AM, Soussi-boudekou S, Vissers S, Andre B. 1997. A family of ammonium transporters in Saccharomyces cerevisiae. Molecular and Cellular Biology 17:4282−93

doi: 10.1128/MCB.17.8.4282
[10]

Couturier J, Montanini B, Martin F, Brun A, Blaudez D, et al. 2007. The expanded family of ammonium transporters in the perennial poplar plant. New Phytologist 174:137−50

doi: 10.1111/j.1469-8137.2007.01992.x
[11]

Guether M , Neuhäuser B, Balestrini R, Dynowski M, Ludewig U, et al. 2009. A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiology 150:73−83

doi: 10.1104/pp.109.136390
[12]

Sohlenkamp C, Wood CC, Roeb GW, Udvardi MK. 2002. Characterization of Arabidopsis AtAMT2, a high-affinity ammonium transporter of the plasma membrane. Plant Physiology 130:1788−96

doi: 10.1104/pp.008599
[13]

López-Pedrosa A, González-Guerrero M, Valderas A, Azcón-Aguilar C, Ferrol N. 2006. GintAMT1 encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus intraradices. Fungal Genetics and Biology 43:102−10

doi: 10.1016/j.fgb.2005.10.005
[14]

Yuan L, Loque D, Kojima S, Rauch S, Ishiyama K, et al. 2007. The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters. The Plant Cell 19:2636−52

doi: 10.1105/tpc.107.052134
[15]

Neuhäuser B, Dynowski M, Mayer M, Ludewig U. 2007. Regulation of NH4+ transport by essential cross talk between AMT monomers through the carboxyl tails. Plant Physiology 143:1651−9

doi: 10.1104/pp.106.094243
[16]

Mazurkiewicz D. 2013. Characterisation of a Novel Family of Eukaryotic Ammonium Transport Proteins. Thesis. The University of Adelaide, Australia.

[17]

Huang L, Zhang H, Zhang H, Deng X, Wei N. 2015. HY5 regulates nitrite reductase 1 (NIR1) and ammonium transporter1;2 (AMT1;2) in Arabidopsis seedlings. Plant Science 238:330−39

doi: 10.1016/j.plantsci.2015.05.004
[18]

Santos LA, Souza S, Fernandes MS. 2012. OsDof25 expression alters carbon and nitrogen metabolism in Arabidopsis under high N-supply. Plant Biotechnology Reports 6:327−37

doi: 10.1007/s11816-012-0227-2
[19]

Yanagisawa S, Akiyama A, Kisaka H, Uchimiya H Miwa T. 2004. Metabolic engineering with Dof1 transcription factor in plants: Improved nitrogen assimilation and growth under low-nitrogen conditions. PNAS 101:7833−38

doi: 10.1073/pnas.0402267101
[20]

Wu Y, Yang W, Wei J, Yoon H, An G. 2017. Transcription factor OsDOF18 controls ammonium uptake by inducing ammonium transporters in rice roots. Molecules and Cells 40:178−85

doi: 10.14348/molcells.2017.2261
[21]

Yanagisawa S. 2000. Dof1 and Dof2 transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize. The Plant Journal 21:281−88

doi: 10.1046/j.1365-313x.2000.00685.x
[22]

El-kereamy A, Bi YM, Ranathunge K, Beatty PH, Good AG, et al. 2012. The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism. PLoS One 7:e52030

doi: 10.1371/journal.pone.0052030
[23]

Chiasson DM, Loughlin PC, Mazurkiewicz D, Mohammadidehcheshmeh M, Fedorova EE, et al. 2014. Soybean SAT1 (Symbiotic Ammonium Transporter 1) encodes a bHLH transcription factor involved in nodule growth and $ \text{NH}^+_4 $ transport. PNAS 111:4814−19

doi: 10.1073/pnas.1312801111
[24]

Dehcheshmeh MM. 2013. Regulatory control of the symbiotic enhanced soybean bHLH transcription factor, GmSAT1. Thesis. The University of Adelaide, Australia.

[25]

Miao Y, Stewart BA, Zhang F. 2011. Long-term experiments for sustainable nutrient management in China: A review. Agronomy for Sustainable Development 31:397−414

doi: 10.1051/agro/2010034
[26]

Dawar K, Saif-ur-rahman Fahad S, Alam SS, Khan SA, Dawar A, et al. 2021. Influence of variable biochar concentration on yield-scaled nitrous oxide emissions, Wheat yield and nitrogen use efficiency. Scientific Reports 11:16774

doi: 10.1038/s41598-021-96309-4
[27]

Rubio-asensio JS, Bloom AJ. 2017. Inorganic nitrogen form: a major player in wheat and Arabidopsis responses to elevated CO2. Journal of Experimental Botany 68:2611−25

doi: 10.1093/jxb/erw465
[28]

Xin W, Zhang L, Zhang W, Gao J, Yi J, et al. 2019. An integrated analysis of the rice transcriptome and metabolome reveals root growth regulation mechanisms in response to nitrogen availability. International Journal of Molecular Sciences 20:5893

doi: 10.3390/ijms20235893
[29]

Von Wittgenstein NJ, Le CH Hawkins BJ, Ehlting J. 2014. Evolutionary classification of ammonium, nitrate, and peptide transporters in land plants. BMC Evolutionary Biology 14:1−17

doi: 10.1186/1471-2148-14-11
[30]

Moon S, Cho LH, Kim YJ, Gho YS, Jeong HY, et al. 2019. RSL Class II Transcription Factors Guide the Nuclear Localization of RHL1 to Regulate Root Hair Development. Plant Physiologist 179:558−68

doi: 10.1104/pp.18.01002
[31]

Bernhardt C, Lee MM, Gonzalez A, Zhang F, Lloyd A, et al. 2003. The bHLH genes GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) specify epidermal cell fate in the Arabidopsis root. Development 130:6431−39

doi: 10.1242/dev.00880
[32]

Schiefelbein J, Huang L, Zheng X. 2014. Regulation of epidermal cell fate in Arabidopsis roots: the importance of multiple feedback loops. Frontiers in Plant Science 5:47

doi: 10.3389/fpls.2014.00047
[33]

Kwak SH, Schiefelbein J. 2014. TRIPTYCHON, not CAPRICE, participates in feedback regulation of SCM expression in the Arabidopsis root epidermis. Plant Signaling and Behavior 9:e973815

doi: 10.4161/15592324.2014.973815
[34]

Monshausen GB, Bibikova TN, Messerli MA, Shi C, Gilroy S. 2007. Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs. PNAS 104:20996−1001

doi: 10.1073/pnas.0708586104
[35]

Waszczak C, Carmody M, Kangasjärvi J. 2018. Reactive oxygen species in plant signaling. Annual Review of Plant Biology 69:209−36

doi: 10.1146/annurev-arplant-042817-040322
[36]

Miller G, Shulaev V, Mittler R. 2008. Reactive oxygen signaling and abiotic stress. Physiologia Plantarum 133:481−89

doi: 10.1111/j.1399-3054.2008.01090.x
[37]

Bloom AJ, Sukrapanna SS, Warner RL. 1992. Root respiration associated with ammonium and nitrate absorption and assimilation by barley. Plant Physiology 99:1294−301

doi: 10.1104/pp.99.4.1294
[38]

Wang YY, Hsu PK, Tsay YF. 2012. Uptake, allocation and signaling of nitrate. Trends of Plant Science 17:458−67

doi: 10.1016/j.tplants.2012.04.006
[39]

Li B, Shi W. 2007. Effects of elevated $ \text{NH}^+_4 $ on Arabidopsis seedlings different in accessions. Journal of Soil 44:508−15

[40]

Na Y. 2010. Interactions between nitrogen ($\text{NH}^+_4 $, $\text{NO}^-_3 $) and phytohormones in the regulation of root conformation in Arabidopsis thaliana. Thesis. Nanjing Agricultural University.

[41]

Yang Y, Zheng P, Ren Y, Yao Y, You C, et al. 2021. Apple MdSAT1 encodes a bHLHm1 transcription factor involved in salinity and drought responses. Planta 253:46

doi: 10.1007/s00425-020-03528-6
[42]

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35:1547−49

doi: 10.1093/molbev/msy096
[43]

Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols 10:845−58

doi: 10.1038/nprot.2015.053
[44]

Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, et al. 2007. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Research 35:71−74

doi: 10.1093/nar/gkm306
[45]

Corpas F. J. S. L. 2004. Cadmium-induced subcellular accumulation of O2− and H2O2 in pea leaves-ROMERO-PUERTAS. Plant Cell and Environment 27:1122−34

doi: 10.1111/j.1365-3040.2004.01217.x