[1] |
Delgado A, Sun DW. 2001. Heat and mass transfer models for predicting freezing processes – a review. Journal of Food Engineering 47:157−74 doi: 10.1016/S0260-8774(00)00112-6 |
[2] |
Damodaran S. 2007. Inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate. Journal of Agricultural and Food Chemistry 55:10918−23 doi: 10.1021/jf0724670 |
[3] |
Zhu S, Ramaswamy HS, Le Bail A. 2005. Ice-crystal formation in gelatin gel during pressure shift versus conventional freezing. Journal of Food Engineering 66:69−76 doi: 10.1016/j.jfoodeng.2004.02.035 |
[4] |
Atıcı Ö, Nalbantoǧlu B. 2003. Antifreeze proteins in higher plants. Phytochemistry 64:1187−96 doi: 10.1016/S0031-9422(03)00420-5 |
[5] |
Venketesh S, Dayananda C. 2008. Properties, potentials, and prospects of antifreeze proteins. Critical Reviews in Biotechnology 28:57−82 doi: 10.1080/07388550801891152 |
[6] |
Xiang H, Yang X, Ke L, Hu Y. 2020. The properties, biotechnologies, and applications of antifreeze proteins. International Journal of Biological Macromolecules 153:661−75 doi: 10.1016/j.ijbiomac.2020.03.040 |
[7] |
Ustun NS, Turhan S. 2015. Antifreeze proteins: characteristics, function, mechanism of action, sources and application to foods. Journal of Food Processing and Preservation 39:3189−97 doi: 10.1111/jfpp.12476 |
[8] |
Gilbert JA, Hill PJ, Dodd CER, Laybourn-Parry J. 2004. Demonstration of antifreeze protein activity in Antarctic lake bacteria. Microbiology 150:171−80 doi: 10.1099/mic.0.26610-0 |
[9] |
Wen D, Laursen RA. 1993. A d-antifreeze polypeptide displays the same activity as its natural l-enantiomer. FEBS letters 317:31−34 doi: 10.1016/0014-5793(93)81485-I |
[10] |
Griffith M, Ewart KV. 1995. Antifreeze proteins and their potential use in frozen foods. Biotechnology Advances 13:375−402 doi: 10.1016/0734-9750(95)02001-J |
[11] |
Regand A, Goff HD. 2006. Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass. Journal of Dairy Science 89:49−57 doi: 10.3168/jds.S0022-0302(06)72068-9 |
[12] |
Gaukel V, Leiter A, Spieß WEL. 2014. Synergism of different fish antifreeze proteins and hydrocolloids on recrystallization inhibition of ice in sucrose solutions. Journal of Food Engineering 141:44−50 doi: 10.1016/j.jfoodeng.2014.05.016 |
[13] |
Mueller JP, Liceaga AM. 2016. Characterization and cryoprotection of invasive silver carp (Hypophthalmicthys molitrix) protein hydrolysates. Journal of Aquatic Food Product Technology 25:131−43 doi: 10.1080/10498850.2013.832452 |
[14] |
Wang S, Damodaran S. 2009. Ice-structuring peptides derived from bovine collagen. Journal of Agricultural and Food Chemistry 57:5501−9 doi: 10.1021/jf900524y |
[15] |
Damodaran S, Wang S. 2017. Ice crystal growth inhibition by peptides from fish gelatin hydrolysate. Food Hydrocolloids 70:46−56 doi: 10.1016/j.foodhyd.2017.03.029 |
[16] |
Baardsnes J, Davies PL. 2002. Contribution of hydrophobic residues to ice binding by fish type III antifreeze protein. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1601:49−54 doi: 10.1016/S1570-9639(02)00431-4 |
[17] |
Chao H, Houston ME, Hodges RS, Kay CM, Sykes BD, et al. 1997. A diminished role for hydrogen bonds in antifreeze protein binding to ice. Biochemistry 36:14652−60 doi: 10.1021/bi970817d |
[18] |
Davies PL, Roach AH, Hew CL. 1982. DNA sequence coding for an antifreeze protein precursor from winter flounder. Proceedings of the National Academy of Sciences 79:335−9 doi: 10.1073/pnas.79.2.335 |
[19] |
Gronwald W, Chao H, Reddy DV, Davies PL, Sykes BD, et al. 1996. NMR characterization of side chain flexibility and backbone structure in the type I antifreeze protein at near freezing temperatures. Biochemistry 35:16698−704 doi: 10.1021/bi961934w |
[20] |
Devries AL, Lin Y. 1977. Structure of a peptide antifreeze and mechanism of adsorption to ice. Biochimica et Biophysica Acta (BBA) - Protein Structure 495:388−92 doi: 10.1016/0005-2795(77)90395-6 |
[21] |
Graham B, Fayter AER, Houston JE, Evans RC, Gibson MI. 2018. Facially amphipathic glycopolymers inhibit ice recrystallization. Journal of the American Chemical Society 140:5682−5 doi: 10.1021/jacs.8b02066 |
[22] |
Tachibana Y, Fletcher GL, Fujitani N, Tsuda S, Monde K, et al. 2004. Antifreeze glycoproteins: elucidation of the structural motifs that are essential for antifreeze activity. Angewandte Chemie International Edition 43:856−62 doi: 10.1002/anie.200353110 |
[23] |
Attia YA, Al-Harthi MA, Korish MA, Shiboob MH. 2020. Protein and Amino Acid Content in Four Brands of Commercial Table Eggs in Retail Markets in Relation to Human Requirements. Animals 10:406 doi: 10.3390/ani10030406 |
[24] |
Iqbal A, Ateeq N, Khalil IA, Perveen S, Saleemullah S. 2006. Physicochemical characteristics and amino acid profile of chickpea cultivars grown in Pakistan. Journal of Foodservice 17:94−101 doi: 10.1111/j.1745-4506.2006.00024.x |
[25] |
Loveday SM. 2019. Food proteins: technological, nutritional, and sustainability attributes of traditional and emerging proteins. Annual Review of Food Science and Technology 10:311−39 doi: 10.1146/annurev-food-032818-121128 |
[26] |
Van Vlierberghe S, Graulus GJ, Keshari Samal S, Van Nieuwenhove I, Dubruel P. 2014. Porous hydrogel biomedical foam scaffolds for tissue repair. In Biomedical Foams for Tissue Engineering Applications, ed. PA Netti. UK: Woodhead Publishing. pp. 335−90 https://doi.org/10.1533/9780857097033.2.335 |
[27] |
Quan TH, Benjakul S. 2018. Compositions, protease inhibitor and gelling property of duck egg albumen as affected by salting. Korean Journal for Food Science of Animal Resources 38:14−25 doi: 10.5851/kosfa.2018.38.1.014 |
[28] |
Saxena I, Tayyab S. 1997. Protein proteinase inhibitors from avian egg whites. Cellular and Molecular Life Sciences CMLS 53:13−23 doi: 10.1007/PL00000575 |
[29] |
Mitchell DE, Gibson MI. 2015. Latent ice recrystallization inhibition activity in nonantifreeze proteins: Ca2+-activated plant lectins and cation-activated antimicrobial peptides. Biomacromolecules 16:3411−16 doi: 10.1021/acs.biomac.5b01118 |
[30] |
Primacella M, Fei T, Acevedo N, Wang T. 2018. Effect of food additives on egg yolk gelation induced by freezing. Food Chemistry 263:142−50 doi: 10.1016/j.foodchem.2018.04.071 |
[31] |
Rudolph AS, Crowe JH. 1985. Membrane stabilization during freezing: The role of two natural cryoprotectants, trehalose and proline. Cryobiology 22:367−77 doi: 10.1016/0011-2240(85)90184-1 |
[32] |
Dou M, Lu C, Sun Z, Rao W. 2019. Natural cryoprotectants combinations of L-proline and trehalose for red blood cells cryopreservation. Cryobiology 91:23−9 doi: 10.1016/j.cryobiol.2019.11.002 |
[33] |
Bang JK, Lee JH, Murugan RN, Lee SG, Do H, et al. 2013. Antifreeze peptides and glycopeptides, and their derivatives: potential uses in biotechnology. Marine Drugs 11:2013−41 doi: 10.3390/md11062013 |
[34] |
Nguyen DH, Colvin ME, Yeh Y, Feeney RE, Fink WH. 2002. The Dynamics, Structure, and Conformational Free Energy of Proline-Containing Antifreeze Glycoprotein. Biophysical Journal 82:2892−905 doi: 10.1016/S0006-3495(02)75630-0 |
[35] |
FDA. 2018. Are You Storing Food Safely? www.fda.gov/consumers/consumer-updates/are-you-storing-food-safely |
[36] |
Biggs CI, Bailey TL, Graham B, Stubbs C, Fayter A, et al. 2017. Polymer mimics of biomacromolecular antifreezes. Nature Communications 8:1546 doi: 10.1038/s41467-017-01421-7 |
[37] |
Li T, Zhao Y, Zhong Q, Wu T. 2019. Inhibiting Ice Recrystallization by Nanocelluloses. Biomacromolecules 20:1667−74 doi: 10.1021/acs.biomac.9b00027 |
[38] |
Alizadeh-Pasdar N, Li-Chan ECY. 2000. Comparison of protein surface hydrophobicity measured at various pH values using three different fluorescent probes. Journal of Agricultural and Food Chemistry 48:328−34 doi: 10.1021/jf990393p |
[39] |
Zhang T, Ding M, Tao L, Liu L, Tao N, et al. 2020. Octenyl succinic anhydride modification of bovine bone and fish skin gelatins and their application for fish oil-loaded emulsions. Food Hydrocolloids 108:106041 doi: 10.1016/j.foodhyd.2020.106041 |
[40] |
Bredow M, Vanderbeld B, Walker VK. 2017. Ice-binding proteins confer freezing tolerance in transgenic Arabidopsis thaliana. Plant Biotechnology Journal 15:68−81 doi: 10.1111/pbi.12592 |
[41] |
Li T, Li M, Dia VP, Lenaghan S, Zhong Q, et al. 2020. Electrosterically stabilized cellulose nanocrystals demonstrate ice recrystallization inhibition and cryoprotection activities. International Journal of Biological Macromolecules 165:2378−86 doi: 10.1016/j.ijbiomac.2020.10.143 |
[42] |
Price SJ, Pangloli P, Krishnan HB, Dia VP. 2016. Kunitz trypsin inhibitor in addition to Bowman-Birk inhibitor influence stability of lunasin against pepsin-pancreatin hydrolysis. Food Research International 90:205−15 doi: 10.1016/j.foodres.2016.10.051 |
[43] |
Achouri A, Zhang W, Xu S. 1998. Enzymatic hydrolysis of soy protein isolate and effect of succinylation on the functional properties of resulting protein hydrolysates. Food Research International 31:617−23 doi: 10.1016/S0963-9969(98)00104-5 |
[44] |
Kulchaiyawat C, Wang T, Han Z. 2016. Improving albumen thermal stability using succinylation reaction with octenyl succinic anhydride. LWT 73:630−9 doi: 10.1016/j.lwt.2016.07.003 |
[45] |
Means GE, Feeney RE. 1998. Chemical modifications of proteins: A review. Journal of food biochemistry 22:399−426 doi: 10.1111/j.1745-4514.1998.tb00253.x |
[46] |
Zhao Y, Ma C-Y, Yuen S-N, Phillips DL. 2004. Study of succinylated food proteins by Raman spectroscopy. Journal of Agricultural and Food Chemistry 52:1815−23 doi: 10.1021/jf030577a |
[47] |
Nisov A, Ercili-Cura D, Nordlund E. 2020. Limited hydrolysis of rice endosperm protein for improved techno-functional properties. Food Chemistry 302:125274 doi: 10.1016/j.foodchem.2019.125274 |
[48] |
Kalman DS. 2014. Amino acid composition of an organic brown rice protein concentrate and isolate compared to soy and whey concentrates and isolates. Foods 3:394−402 doi: 10.3390/foods3030394 |
[49] |
Barać M, Cabrilo S, Pešić M, Stanojević S, Pavlićević M, et al. 2011. Functional properties of pea (Pisum sativum, L.) protein isolates modified with chymosin. International Journal of Molecular Sciences 12:8372−87 doi: 10.3390/ijms12128372 |
[50] |
Bassan JC, Goulart AJ, Nasser ALM, Bezerra TMS, Garrido SS, et al. 2015. Buffalo Cheese Whey Proteins, Identification of a 24 kDa Protein and Characterization of Their Hydrolysates: In Vitro Gastrointestinal Digestion. PLoS One 10:e0139550 doi: 10.1371/journal.pone.0139550 |
[51] |
Benjakul S, Kittiphattanabawon P. 2019. Gelatin. In Encyclopedia of Food Chemistry, ed. Melton L, Shahidi F, Varelis P. USA: Elsevier. pp. 121−27 https://doi.org/10.1016/B978-0-08-100596-5.21588-6 |
[52] |
Iwashita K, Inoue N, Handa A, Shiraki K. 2015. Thermal aggregation of hen egg white proteins in the presence of salts. The Protein Journal 34:212−19 doi: 10.1007/s10930-015-9612-3 |
[53] |
Luo Y, Hu Q. 2017. Food-derived biopolymers for nutrient delivery. In Nutrient Delivery, ed. Grumezescu AM. UK: Academic Press, Elsevier. pp. 251−91 https://doi.org/10.1016/B978-0-12-804304-2.00007-X |
[54] |
Vincent D, Elkins A, Condina MR, Ezernieks V, Rochfort S. 2016. Quantitation and identification of intact major milk proteins for high-throughput LC-ESI-Q-TOF MS analyses. PLoS One 11:e0163471 doi: 10.1371/journal.pone.0163471 |