[1]

Chen ZZ, Ho CK, Ahn IS, Chiang VL. 2006. Eucalyptus. USA: Humana Press. pp. 125–34

[2]

Byrne M. 2008. Phylogeny, diversity and evolution of eucalypts. In Plant genome: Biodiversity and evolution, ed. Sharma A. Enfield, NH, USA: Science. pp. 303–46

[3]

Girijashankar V. 2011. Genetic transformation of eucalyptus. Physiology and Molecular Biology of Plants 17:9−23

doi: 10.1007/s12298-010-0048-0
[4]

Yin Y, Wang C, Xiao D, Liang Y, Wang Y. 2021. Advances and Perspectives of Transgenic Technology and Biotechnological Application in Forest Trees. Frontiers in Plant Science 12:786328

doi: 10.3389/fpls.2021.786328
[5]

Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, et al. 2014. The genome of Eucalyptus grandis. Nature 510:356−62

doi: 10.1038/nature13308
[6]

Mullins KV, Llewellyn DJ, Hartney VJ, Strauss S, Dennis ES. 1997. Regeneration and transformation of Eucalyptus camaldulensis. Plant Cell Reports 16:787−91

doi: 10.1007/s002990050321
[7]

Ouyang L, Li L. 2016. Effects of an inducible aiiA gene on disease resistance in Eucalyptus urophylla × Eucalyptus grandis. Transgenic Research 25:441−52

doi: 10.1007/s11248-016-9940-x
[8]

Wang X, Luo P, Qiu Z, Li X, Zeng B, et al. 2022. Adventitious bud regeneration and Agrobacterium tumefaciens-mediated genetic transformation of Eucalyptus urophylla × E. tereticornis interspecific hybrid. In Vitro Cellular & Developmental Biology - Plant 58:416−26

doi: 10.1007/s11627-021-10240-x
[9]

Wang Z, Li L, Ouyang L. 2021. Efficient genetic transformation method for Eucalyptus genome editing. PLoS One 16:e0252011

doi: 10.1371/journal.pone.0252011
[10]

de la Torre F, Rodríguez R, Jorge G, Villar B, Álvarez-Otero R, et al. 2014. Genetic transformation of Eucalyptus globulus using the vascular-specific EgCCR as an alternative to the constitutive CaMV35S promoter. Plant Cell, Tissue and Organ Culture (PCTOC) 117:77−84

doi: 10.1007/s11240-013-0422-z
[11]

Prakash MG, Gurumurthi K. 2005. Agrobacterium-mediated genetic transformation and regeneration of transgenic plants in Eucalyptus tereticornis Sm. Plant Cell Biotechnology and Molecular Biology 6:23−28

[12]

Chauhan RD, Veale A, Ma C, Strauss SH, Myburg AA. 2014. Genetic Transformation of Eucalyptus-Challenges and Future Prospects. In Tree Biotechnology, ed. Ramawat KG, Mérillon JM, Ahuja MR. Boca Raton: CRC Press. pp. 392–445. https://doi.org/10.1201/b16714

[13]

Plasencia A, Soler M, Dupas A, Ladouce N, Silva-Martins G, et al. 2016. Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation. Plant Biotechnology Journal 14:1381−93

doi: 10.1111/pbi.12502
[14]

Dai Y, Hu GJ, Dupas A, Medina L, Blandels N, et al. 2020. Implementing the CRISPR/Cas9 technology in Eucalyptus hairy roots using wood-related genes. International Journal of Molecular Sciences21

doi: 10.3390/ijms21103408
[15]

Jefferson RA, Kavanagh TA, Bevan MW. 1987. GUS fusions: Beta-glucuronidase as a sensitive and versatile gene fusion marker in higher-plants. The EMBO Journal 6:3901−7

doi: 10.1002/j.1460-2075.1987.tb02730.x
[16]

Shimomura O, Johnson FH, Saiga Y. 1962. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. Journal of Cellular and Comparative Physiology 59:223−39

doi: 10.1002/jcp.1030590302
[17]

Stewart C. 2001. The utility of green fluorescent protein in transgenic plants. Plant Cell Reports 20:376−82

doi: 10.1007/s002990100346
[18]

Ow DW, Wood KV, Deluca M, De Wet JR, Helinski DR, et al. 1986. Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234:856−59

doi: 10.1126/science.234.4778.856
[19]

Aggarwal D, Kumar A, Sudhakara Reddy M. 2011. Agrobacterium tumefaciens mediated genetic transformation of selected elite clone(s) of Eucalyptus tereticornis. Acta Physiologiae Plantarum 33:1603−11

doi: 10.1007/s11738-010-0695-3
[20]

de França Bettencourt GM, Soccol CR, Giovanella TS, Franciscon L, Kestring DR, et al. 2018. Agrobacterium tumefaciens-mediated transformation of Eucalyptus urophylla clone BRS07-01. Journal of Forestry Research 31:507−19

doi: 10.1007/s11676-018-0777-4
[21]

Tör M, Mantell SH, Ainsworth C. 1992. Endophytic bacteria expressing β-glucuronidase cause false positives in transformation of Dioscorea species. Plant Cell Reports 11:452−56

doi: 10.1007/BF00232689
[22]

Hu W, Cheng CL. 1995. Expression of Aequorea green fluorescent protein in plant cells. FEBS Letters 369:331−34

doi: 10.1016/0014-5793(95)00776-6
[23]

Davis SJ, Vierstra RD. 1998. Soluble, highly fluorescent variants of green fluorescent protein (GFP) for use in higher plants. Plant Molecular Biology 36:521−28

doi: 10.1023/A:1005991617182
[24]

Ansari AM, Ahmed AK, Matsangos AE, Lay F, Born LJ, et al. 2016. Cellular GFP toxicity and immunogenicity: Potential confounders in in vivo cell tracking experiments. Stem Cell Reviews and Reports 12:553−59

doi: 10.1007/s12015-016-9670-8
[25]

Haseloff J, Amos B. 1995. GFP in plants. Trends in Genetics 11:328−29

doi: 10.1016/0168-9525(95)90186-8
[26]

Crameri A, Whitehorn EA, Tate E, Stemmer WPC. 1996. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nature Biotechnology 14:315−19

doi: 10.1038/nbt0396-315
[27]

Millar AJ, Short SR, Chua NH, Kay SA. 1992. A novel circadian phenotype based on firefly luciferase expression in transgenic plants. The Plant Cell 4:1075−87

doi: 10.1105/tpc.4.9.1075
[28]

Baird GS, Zacharias DA, Tsien RY. 2000. Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. PNAS 97:11984−89

doi: 10.1073/pnas.97.22.11984
[29]

Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, et al. 1999. Fluorescent proteins from nonbioluminescent Anthozoa species. Nature Biotechnology 17:969−73

doi: 10.1038/13657
[30]

Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, et al. 2002. A monomeric red fluorescent protein. PNAS 99:7877−82

doi: 10.1073/pnas.082243699
[31]

Sun L, Alariqi M, Zhu Y, Li J, Li Z, et al. 2018. Red fluorescent protein (DsRed2), an ideal reporter for cotton genetic transformation and molecular breeding. The Crop Journal 6:366−76

doi: 10.1016/j.cj.2018.05.002
[32]

Jach G, Binot E, Frings S, Luxa K, Schell J. 2001. Use of red fluorescent protein from Discosoma sp. (dsRED) as a reporter for plant gene expression. The Plant Journal 28:483−91

doi: 10.1046/j.1365-313X.2001.01153.x
[33]

Kumar C, Wing R, Sundaresan V. 2006. Efficient insertional mutagenesis in rice using the maize En/Spm elements. The Plant Journal 44:879−92

doi: 10.1111/j.1365-313x.2005.02570.x
[34]

Nishizawa K, Kita Y, Kitayama M, Ishimoto M. 2006. A red fluorescent protein, DsRed2, as a visual reporter for transient expression and stable transformation in soybean. Plant Cell Reports 25:1355−61

doi: 10.1007/s00299-006-0210-x
[35]

Zhang Q, Walawage SL, Tricoli DM, Dandekar AM, Leslie CA. 2015. A red fluorescent protein (DsRED) from Discosoma sp. as a reporter for gene expression in walnut somatic embryos. Plant Cell Reports 34:861−69

doi: 10.1007/s00299-015-1749-1
[36]

Kausch AP, Nelson-Vasilchik K, Hague J, Mookkan M, Quemada H, et al. 2019. Edit at will: Genotype independent plant transformation in the era of advanced genomics and genome editing. Plant Science 281:186−205

doi: 10.1016/j.plantsci.2019.01.006
[37]

Maren NA, Duan H, Da K, Yencho GC, Ranney TG, et al. 2022. Genotype-independent plant transformation. Horticulture Research 9:uhac047

doi: 10.1093/hr/uhac047
[38]

Zhang Y, Wang X. 2021. Geographical spatial distribution and productivity dynamic change of eucalyptus plantations in China. Scientific Reports 11:19764

doi: 10.1038/s41598-021-97089-7
[39]

Sartoretto LM, Cid LPB, Brasileiro ACM. 2002. Biolistic transformation of Eucalyptus grandis × E. urophylla callus. Functional Plant Biology 29:917

doi: 10.1071/PP01153
[40]

Deepika R, Veale A, Ma C, Strauss SH, Myburg AA. 2011. Optimization of a plant regeneration and genetic transformation protocol for Eucalyptus clonal genotypes. BMC Proceedings 5:P132

doi: 10.1186/1753-6561-5-s7-p132
[41]

Karimi M, Inzé D, Depicker A. 2002. GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends in Plant Science 7:193−95

doi: 10.1016/S1360-1385(02)02251-3
[42]

Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assay with tobacco tissue culture. Physiologia Plantarum 15:473−97