[1] |
Chen ZZ, Ho CK, Ahn IS, Chiang VL. 2006. Eucalyptus. USA: Humana Press. pp. 125–34 |
[2] |
Byrne M. 2008. Phylogeny, diversity and evolution of eucalypts. In Plant genome: Biodiversity and evolution, ed. Sharma A. Enfield, NH, USA: Science. pp. 303–46 |
[3] |
Girijashankar V. 2011. Genetic transformation of eucalyptus. Physiology and Molecular Biology of Plants 17:9−23 doi: 10.1007/s12298-010-0048-0 |
[4] |
Yin Y, Wang C, Xiao D, Liang Y, Wang Y. 2021. Advances and Perspectives of Transgenic Technology and Biotechnological Application in Forest Trees. Frontiers in Plant Science 12:786328 doi: 10.3389/fpls.2021.786328 |
[5] |
Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, et al. 2014. The genome of Eucalyptus grandis. Nature 510:356−62 doi: 10.1038/nature13308 |
[6] |
Mullins KV, Llewellyn DJ, Hartney VJ, Strauss S, Dennis ES. 1997. Regeneration and transformation of Eucalyptus camaldulensis. Plant Cell Reports 16:787−91 doi: 10.1007/s002990050321 |
[7] |
Ouyang L, Li L. 2016. Effects of an inducible aiiA gene on disease resistance in Eucalyptus urophylla × Eucalyptus grandis. Transgenic Research 25:441−52 doi: 10.1007/s11248-016-9940-x |
[8] |
Wang X, Luo P, Qiu Z, Li X, Zeng B, et al. 2022. Adventitious bud regeneration and Agrobacterium tumefaciens-mediated genetic transformation of Eucalyptus urophylla × E. tereticornis interspecific hybrid. In Vitro Cellular & Developmental Biology - Plant 58:416−26 doi: 10.1007/s11627-021-10240-x |
[9] |
Wang Z, Li L, Ouyang L. 2021. Efficient genetic transformation method for Eucalyptus genome editing. PLoS One 16:e0252011 doi: 10.1371/journal.pone.0252011 |
[10] |
de la Torre F, Rodríguez R, Jorge G, Villar B, Álvarez-Otero R, et al. 2014. Genetic transformation of Eucalyptus globulus using the vascular-specific EgCCR as an alternative to the constitutive CaMV35S promoter. Plant Cell, Tissue and Organ Culture (PCTOC) 117:77−84 doi: 10.1007/s11240-013-0422-z |
[11] |
Prakash MG, Gurumurthi K. 2005. Agrobacterium-mediated genetic transformation and regeneration of transgenic plants in Eucalyptus tereticornis Sm. Plant Cell Biotechnology and Molecular Biology 6:23−28 |
[12] |
Chauhan RD, Veale A, Ma C, Strauss SH, Myburg AA. 2014. Genetic Transformation of Eucalyptus-Challenges and Future Prospects. In Tree Biotechnology, ed. Ramawat KG, Mérillon JM, Ahuja MR. Boca Raton: CRC Press. pp. 392–445. https://doi.org/10.1201/b16714 |
[13] |
Plasencia A, Soler M, Dupas A, Ladouce N, Silva-Martins G, et al. 2016. Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation. Plant Biotechnology Journal 14:1381−93 doi: 10.1111/pbi.12502 |
[14] |
Dai Y, Hu GJ, Dupas A, Medina L, Blandels N, et al. 2020. Implementing the CRISPR/Cas9 technology in Eucalyptus hairy roots using wood-related genes. International Journal of Molecular Sciences21 doi: 10.3390/ijms21103408 |
[15] |
Jefferson RA, Kavanagh TA, Bevan MW. 1987. GUS fusions: Beta-glucuronidase as a sensitive and versatile gene fusion marker in higher-plants. The EMBO Journal 6:3901−7 doi: 10.1002/j.1460-2075.1987.tb02730.x |
[16] |
Shimomura O, Johnson FH, Saiga Y. 1962. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. Journal of Cellular and Comparative Physiology 59:223−39 doi: 10.1002/jcp.1030590302 |
[17] |
Stewart C. 2001. The utility of green fluorescent protein in transgenic plants. Plant Cell Reports 20:376−82 doi: 10.1007/s002990100346 |
[18] |
Ow DW, Wood KV, Deluca M, De Wet JR, Helinski DR, et al. 1986. Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234:856−59 doi: 10.1126/science.234.4778.856 |
[19] |
Aggarwal D, Kumar A, Sudhakara Reddy M. 2011. Agrobacterium tumefaciens mediated genetic transformation of selected elite clone(s) of Eucalyptus tereticornis. Acta Physiologiae Plantarum 33:1603−11 doi: 10.1007/s11738-010-0695-3 |
[20] |
de França Bettencourt GM, Soccol CR, Giovanella TS, Franciscon L, Kestring DR, et al. 2018. Agrobacterium tumefaciens-mediated transformation of Eucalyptus urophylla clone BRS07-01. Journal of Forestry Research 31:507−19 doi: 10.1007/s11676-018-0777-4 |
[21] |
Tör M, Mantell SH, Ainsworth C. 1992. Endophytic bacteria expressing β-glucuronidase cause false positives in transformation of Dioscorea species. Plant Cell Reports 11:452−56 doi: 10.1007/BF00232689 |
[22] |
Hu W, Cheng CL. 1995. Expression of Aequorea green fluorescent protein in plant cells. FEBS Letters 369:331−34 doi: 10.1016/0014-5793(95)00776-6 |
[23] |
Davis SJ, Vierstra RD. 1998. Soluble, highly fluorescent variants of green fluorescent protein (GFP) for use in higher plants. Plant Molecular Biology 36:521−28 doi: 10.1023/A:1005991617182 |
[24] |
Ansari AM, Ahmed AK, Matsangos AE, Lay F, Born LJ, et al. 2016. Cellular GFP toxicity and immunogenicity: Potential confounders in in vivo cell tracking experiments. Stem Cell Reviews and Reports 12:553−59 doi: 10.1007/s12015-016-9670-8 |
[25] |
Haseloff J, Amos B. 1995. GFP in plants. Trends in Genetics 11:328−29 doi: 10.1016/0168-9525(95)90186-8 |
[26] |
Crameri A, Whitehorn EA, Tate E, Stemmer WPC. 1996. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nature Biotechnology 14:315−19 doi: 10.1038/nbt0396-315 |
[27] |
Millar AJ, Short SR, Chua NH, Kay SA. 1992. A novel circadian phenotype based on firefly luciferase expression in transgenic plants. The Plant Cell 4:1075−87 doi: 10.1105/tpc.4.9.1075 |
[28] |
Baird GS, Zacharias DA, Tsien RY. 2000. Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. PNAS 97:11984−89 doi: 10.1073/pnas.97.22.11984 |
[29] |
Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, et al. 1999. Fluorescent proteins from nonbioluminescent Anthozoa species. Nature Biotechnology 17:969−73 doi: 10.1038/13657 |
[30] |
Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, et al. 2002. A monomeric red fluorescent protein. PNAS 99:7877−82 doi: 10.1073/pnas.082243699 |
[31] |
Sun L, Alariqi M, Zhu Y, Li J, Li Z, et al. 2018. Red fluorescent protein (DsRed2), an ideal reporter for cotton genetic transformation and molecular breeding. The Crop Journal 6:366−76 doi: 10.1016/j.cj.2018.05.002 |
[32] |
Jach G, Binot E, Frings S, Luxa K, Schell J. 2001. Use of red fluorescent protein from Discosoma sp. (dsRED) as a reporter for plant gene expression. The Plant Journal 28:483−91 doi: 10.1046/j.1365-313X.2001.01153.x |
[33] |
Kumar C, Wing R, Sundaresan V. 2006. Efficient insertional mutagenesis in rice using the maize En/Spm elements. The Plant Journal 44:879−92 doi: 10.1111/j.1365-313x.2005.02570.x |
[34] |
Nishizawa K, Kita Y, Kitayama M, Ishimoto M. 2006. A red fluorescent protein, DsRed2, as a visual reporter for transient expression and stable transformation in soybean. Plant Cell Reports 25:1355−61 doi: 10.1007/s00299-006-0210-x |
[35] |
Zhang Q, Walawage SL, Tricoli DM, Dandekar AM, Leslie CA. 2015. A red fluorescent protein (DsRED) from Discosoma sp. as a reporter for gene expression in walnut somatic embryos. Plant Cell Reports 34:861−69 doi: 10.1007/s00299-015-1749-1 |
[36] |
Kausch AP, Nelson-Vasilchik K, Hague J, Mookkan M, Quemada H, et al. 2019. Edit at will: Genotype independent plant transformation in the era of advanced genomics and genome editing. Plant Science 281:186−205 doi: 10.1016/j.plantsci.2019.01.006 |
[37] |
Maren NA, Duan H, Da K, Yencho GC, Ranney TG, et al. 2022. Genotype-independent plant transformation. Horticulture Research 9:uhac047 doi: 10.1093/hr/uhac047 |
[38] |
Zhang Y, Wang X. 2021. Geographical spatial distribution and productivity dynamic change of eucalyptus plantations in China. Scientific Reports 11:19764 doi: 10.1038/s41598-021-97089-7 |
[39] |
Sartoretto LM, Cid LPB, Brasileiro ACM. 2002. Biolistic transformation of Eucalyptus grandis × E. urophylla callus. Functional Plant Biology 29:917 doi: 10.1071/PP01153 |
[40] |
Deepika R, Veale A, Ma C, Strauss SH, Myburg AA. 2011. Optimization of a plant regeneration and genetic transformation protocol for Eucalyptus clonal genotypes. BMC Proceedings 5:P132 doi: 10.1186/1753-6561-5-s7-p132 |
[41] |
Karimi M, Inzé D, Depicker A. 2002. GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends in Plant Science 7:193−95 doi: 10.1016/S1360-1385(02)02251-3 |
[42] |
Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assay with tobacco tissue culture. Physiologia Plantarum 15:473−97 |