[1]

Harrington KC, Hartley MJ, Rahman A, James TK. 2005. Long term ground cover options for apple orchards. New Zealand Plant Protection 58:164−68

doi: 10.30843/nzpp.2005.58.4323
[2]

Shaabani SM, Hatamzadeh A, Biglouei MH. 2018. Improving drought tolerance of two species of cover crop dichondra and lysimachia by spraying trinexapac-ethyl. Acta Horticulturae 1190:163−70

doi: 10.17660/actahortic.2018.1190.28
[3]

Hartley MJ, Rahman A, Harrington KC, James TK. 2000. Assessing ground covers in a newly planted apple orchard. New Zealand Plant Protection 53:22−27

doi: 10.30843/nzpp.2000.53.3643
[4]

Harrington KC, Anderson BJ, Cameron EA. 2002. Establishment techniques for dichondra ground covers in orchards. New Zealand Plant Protection 55:202−6

doi: 10.30843/nzpp.2002.55.3890
[5]

Harrington K, Zhang T, Osborne M, Rahman A. 1999. Orchard weed control with Dichondra micrantha ground covers. Twelfth Australian Weeds Conference, Australian, 1999. pp. 250−54

[6]

Sheu MJ, Deng JS, Huang MH, Liao JC, Wu CH, Huang SS, Huang GJ. 2012. Antioxidant and anti-inflammatory properties of Dichondra repens Forst and its reference compounds. Food Chemistry 132:1010−18

doi: 10.1016/j.foodchem.2011.09.140
[7]

Yao Q, Wang Y, Dong Z, Lai C, Chang B, et al. 2020. Dichondra repens J.R.Forst. and G.Forst.: A review of its traditional uses, chemistry, pharmacology, toxicology and applications. Frontiers in Pharmacology 11:608199

doi: 10.3389/fphar.2020.608199
[8]

Wu J, Qiu P, Yong L, Yang X, Lin L, et al. 2009. Essential oil composition and antibacterial activity of Dichondra repens. Chemistry of Natural Compounds 45:572

doi: 10.1007/s10600-009-9370-6
[9]

Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, et al. 2017. Crop production under drought and heat stress: plant responses and management options. Frontiers in Plant Science 8:1147

doi: 10.3389/fpls.2017.01147
[10]

Garcia AA, Benchimol LL, Barbosa AM, Geraldi IO, Souza Jr CL, et al. 2004. Comparison of RAPD, RFLP, AFLP and SSR markers for diversity studies in tropical maize inbred lines. Genetics and Molecular Biology 27:579−88

doi: 10.1590/S1415-47572004000400019
[11]

Morgante M, Hanafey M, Powell W. 2002. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nature Genetics 30:194−200

doi: 10.1038/ng822
[12]

Varshney RK, Chabane K, Hendre PS, Aggarwal RK, Graner A. 2007. Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. Plant science 173:638−649

doi: 10.1016/j.plantsci.2007.08.010
[13]

Powell W, Morgante M, Andre C, Hanafey M, Vogel J, et al. 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding 2:225−38

doi: 10.1007/BF00564200
[14]

Kumar M, Choi JY, Kumari N, Pareek A, Kim SR. 2015. Molecular breeding in Brassica for salt tolerance: importance of microsatellite (SSR) markers for molecular breeding in Brassica. Frontiers in Plant Science 6:688

doi: 10.3389/fpls.2015.00688
[15]

Maqbool MA, Aslam M, Ali H, Shah TM. 2016. Evaluation of advanced chickpea (Cicer Arietinum L.) accessions based on drought tolerance indices and SSR markers against different water treatments. Pakistan Journal of Botany 48:1421−29

[16]

Li Z, Geng W, Tan M, Ling Y, Zhang Y, et al. 2022. Differential responses to salt stress in four white clover genotypes associated with root growth, endogenous polyamines metabolism, and sodium/potassium accumulation and transport. Frontiers in Plant Science 13:896436

doi: 10.3389/fpls.2022.896436
[17]

Li Z, Tang M, Hassan MJ, Zhang Y, Han L, et al. 2021. Adaptability to high temperature and stay-green genotypes associated with variations in antioxidant, chlorophyll metabolism, and γ-aminobutyric acid accumulation in creeping bentgrass species. Frontiers in Plant Science 12:750728

doi: 10.3389/fpls.2021.750728
[18]

Ajtahed SS, Rezaei A, Hosseini Tafreshi SA. 2021. Identifying superior drought-tolerant Bermudagrass accessions and their defensive responses to mild and severe drought conditions. Euphytica 217:91

doi: 10.1007/s10681-021-02821-z
[19]

Yu X, Bai G, Liu S, Luo N, Wang Y, et al. 2013. Association of candidate genes with drought tolerance traits in diverse perennial ryegrass accessions. Journal of Experimental Botany 64:1537−51

doi: 10.1093/jxb/ert018
[20]

Kumar SPJ, Susmita C, Sripathy KV, Agarwal DK, Pal G, et al. 2022. Molecular characterization and genetic diversity studies of Indian soybean (Glycine max (L.) Merr.) cultivars using SSR markers. Molecular Biology Reports 49:2129−40

doi: 10.1007/s11033-021-07030-4
[21]

Sharopova N, McMullen MD, Schultz L, Schroeder S, Sanchez-Villeda H, et al. 2002. Development and mapping of SSR markers for maize. Plant Molecular Biology 48:463−81

doi: 10.1023/a:1014868625533
[22]

Taheri S, Lee Abdullah T, Yusop MR, Hanafi MM, Sahebi M, et al. 2018. Mining and development of novel SSR markers using next generation sequencing (NGS) data in plants. Molecules 23:399

doi: 10.3390/molecules23020399
[23]

Varshney RK, Sigmund R, Börner A, Korzun V, Stein N, et al. 2005. Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Science 168:195−202

doi: 10.1016/j.plantsci.2004.08.001
[24]

Kuleung C, Baenziger PS, Dweikat I. 2004. Transferability of SSR markers among wheat, rye, and triticale. Theoretical and Applied Genetics 108:1147−50

doi: 10.1007/s00122-003-1532-5
[25]

Saha MC, Mian MAR, Eujayl I, Zwonitzer JC, Wang L, et al. 2004. Tall fescue EST-SSR markers with transferability across several grass species. Theoretical & Applied Genetics 109:783−91

doi: 10.1007/s00122-004-1681-1
[26]

de Oliveira EJ, Morgante CV, de Tarso Aidar S, de Melo Chaves AR, Antonio RP, et al. 2017. Evaluation of cassava germplasm for drought tolerance under field conditions. Euphytica 213:188

doi: 10.1007/s10681-017-1972-7
[27]

Iseki K, Takahashi Y, Muto C, Naito K, Tomooka N. 2018. Diversity of drought tolerance in the genus Vigna. Frontiers in Plant Science 9:729

doi: 10.3389/fpls.2018.00729
[28]

Liu Y, Bowman BC, Hu Y, Liang X, Zhao W, et al. 2017. Evaluation of agronomic traits and drought tolerance of winter wheat accessions from the USDA-ARS national small grains collection. Agronomy 7:51

doi: 10.3390/agronomy7030051
[29]

Torres RO, McNally KL, Cruz CV, Serraj R, Henry A. 2013. Screening of rice Genebank germplasm for yield and selection of new drought tolerance donors. Field Crops Research 147:12−22

doi: 10.1016/j.fcr.2013.03.016
[30]

Li Z, Zhang Y, Zhang X, Peng Y, Merewitz E, et al. 2016. The alterations of endogenous polyamines and phytohormones induced by exogenous application of spermidine regulate antioxidant metabolism, metallothionein and relevant genes conferring drought tolerance in white clover. Environmental & Experimental Botany 124:22−38

doi: 10.1016/j.envexpbot.2015.12.004
[31]

Ahmed M, Zeng Y, Yang X, Anwaar HA, Alghanem S. 2020. Conferring drought-tolerant wheat genotypes through morpho-physiological and chlorophyll indices at seedling stage. Saudi Journal of Biological Sciences 27:2116−23

doi: 10.1016/j.sjbs.2020.06.019
[32]

Dhanda SS, Sethi GS, Behl RK. 2010. Indices of drought tolerance in wheat genotypes at early stages of plant growth. Journal of Agronomy and Crop Science 190:6−12

doi: 10.1111/j.1439-037x.2004.00592.x
[33]

Anjum SA, Xie X, Wang L, Saleem MF, Man C, et al. 2011. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research 6:2026−32

[34]

Appenroth KJ, Stöckel J, Srivastava A, Strasser RJ. 2001. Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. Environmental Pollution 115:49−64

doi: 10.1016/S0269-7491(01)00091-4
[35]

Hendrickson L, Förster B, Pogson BJ, Chow WS. 2005. A simple chlorophyll fluorescence parameter that correlates with the rate coefficient of photoinactivation of Photosystem II. Photosynthesis Research 84:43−49

doi: 10.1007/s11120-004-6430-4
[36]

Viljevac M, Dugalić K, Mihaljević I, Šimić D, Sudar R, et al. 2013. Chlorophylls content, photosynthetic efficiency and genetic markers in two sour cherry (Prunus cerasus L.) genotypes under drought stress. Acta Botanica Croatica 72:221−35

doi: 10.2478/botcro-2013-0003
[37]

Nouri-Ganbalani A, Nouri-Ganbalani G, Hassanpanah D. 2009. Effects of drought stress condition on the yield and yield components of advanced wheat genotypes in Ardabil, Iran. Journal of Food Agriculture and Environment 7:228−34

[38]

Liu C, Yang Z, Hu Y. 2015. Drought resistance of wheat alien chromosome addition lines evaluated by membership function value based on multiple traits and drought resistance index of grain yield. Field Crops Research 179:103−12

doi: 10.1016/j.fcr.2015.04.016
[39]

Badr A, El-Shazly HH, Tarawneh RA, Börner A. 2020. Screening for drought tolerance in maize (Zea mays L.) germplasm using germination and seedling traits under simulated drought conditions. Plants 9:565

doi: 10.3390/plants9050565
[40]

Hoagland DR, Arnon DI. 1950. The water culture method for growing plants without soil. California Agricultural Experiment Station Circular 347:357−59

[41]

Barrs HD, Weatherley PE. 1962. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences 15:413−28

doi: 10.1071/BI9620413
[42]

Blum A, Ebercon A. 1981. Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Science 21:43−47

doi: 10.2135/cropsci1981.0011183X002100010013x
[43]

Arnon D. 1949. Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiology 24:1−15

doi: 10.1104/pp.24.1.1
[44]

Zeng W, Hassan MJ, Kang D, Peng Y, Li Z. 2021. Photosynthetic maintenance and heat shock protein accumulation relating to γ-aminobutyric acid (GABA)-regulated heat tolerance in creeping bentgrass (Agrostis stolonifera). South African Journal of Botany 141:405−13

doi: 10.1016/j.sajb.2021.05.028
[45]

Zhao N, Yu X, Jie Q, Li H, Li H, Hu J, Zhai H, He S, Liu Q. 2013. A genetic linkage map based on AFLP and SSR markers and mapping of QTL for dry-matter content in sweetpotato. Molecular Breeding 32:807−20

doi: 10.1007/s11032-013-9908-y
[46]

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology & Evolution 30:2725−29

doi: 10.1093/molbev/mst197