[1]

Zhang F, Li S, Xiao D, Zhao J, Wang R, et al. 2015. Progress in pest management by natural enemies in greenhouse vegetables in China. Scientia Agricultura Sinica 48:3463−76

doi: 10.3864/j.issn.0578-1752.2015.17.013
[2]

Zhang H, Huang B, Dong L, Hu W, Akhtar MS, et al. 2017. Accumulation, sources and health risks of trace metals in elevated geochemical background soils used for greenhouse vegetable production in southwestern China. Ecotoxicology and Environmental Safety 137:233−99

doi: 10.1016/j.ecoenv.2016.12.010
[3]

FAOSTAT. 2020. Crops and livestock products. Food and Agriculture Organization of the United Nations. www.fao.org/faostat/zh/#data/QCL/visualize

[4]

Wei Z, Liang Y, Inoue M, Zhou M, Huang M, et al. 2009. Effects of different water and fertilizer supply on cucumber soil nutrient content, enzyme activity, and microbial diversity. Chinese Journal of Applied Ecology 20:1678−84

[5]

Taulemesse F, Le Gouis J, Gouache D, Gibon Y, Allard V. 2015. Post-flowering nitrate uptake in wheat is controlled by N status at flowering, with a putative major role of root nitrate transporter NRT2. PLoS One 10:e0120291

doi: 10.1371/journal.pone.0120291
[6]

Taulemesse F, Le Gouis J, Gouache D, Gibon Y, Allard V. 2016. Bread wheat (Triticum aestivum L.) grain protein concentration is related to early post-flowering nitrate uptake under putative control of plant satiety level. PLoS One 11:e0149668

doi: 10.1371/journal.pone.0149668
[7]

Chen J, Zhang Y, Tan Y, Zhang M, Zhu L, et al. 2016. Agronomic nitrogen-use efficiency of rice can be increased by driving OsNRT2.1 expression with the OsNAR2.1 promoter. Plant Biotechnology Journal 14:1705−15

doi: 10.1111/pbi.12531
[8]

Li Y, Xue X, Guo W, Wang L, Duan M, et al. 2019. Soil moisture and nitrate-nitrogen dynamics and economic yield in the greenhouse cultivation of tomato and cucumber under negative pressure irrigation in the North China Plain. Scientific Reports 9:4439

doi: 10.1038/s41598-019-38695-4
[9]

Yu H, Li Z, Gong Y, Mack U, Feger KH, et al. 2006. Water drainage and nitrate leaching under traditional and improved management of vegetable cropping systems in the North China Plain. Journal of Plant Nutrition and Soil Science 169:47−51

doi: 10.1002/jpln.200520546
[10]

Thompson RB, Martínez-Gaitan C, Gallardo M, Giménez C, Fernández MD. 2007. Identification of irrigation and N management practices that contribute to nitrate leaching loss from an intensive vegetable production system by use of a comprehensive survey. Agricultural Water Management 89:261−74

doi: 10.1016/j.agwat.2007.01.013
[11]

Song X, Zhao C, Wang X, Li J. 2009. Study of nitrate leaching and nitrogenfate under intensive vegetable production pattern in northern China. Comptes Rendus Biologies 332:385−92

doi: 10.1016/j.crvi.2008.11.005
[12]

Min J, Zhao X, Shi W, Xing G, Zhu Z. 2011. Nitrogen balance and loss in a greenhouse vegetable system in southeastern China. Pedosphere 21:464−72

doi: 10.1016/S1002-0160(11)60148-3
[13]

Li B, Bi Z, Xiong Z. 2017. Dynamic responses of nitrous oxide emission and nitrogen use efficiency to nitrogen and biochar amendment in an intensified vegetable field in southeastern China. GCB Bioenergy 9:400−13

doi: 10.1111/gcbb.12356
[14]

Liang H, Chen Q, Liang B, Hu K. 2020. Modeling the effects of long-term reduced N application on soil N losses and yield in a greenhouse tomato production system. Agricultural Systems 185:102951

doi: 10.1016/j.agsy.2020.102951
[15]

Liang H, Lv H, Batchelor WD, Lian X, Wang Z, et al. 2020. Simulating nitrate and DON leaching to optimize water and N management practices for greenhouse vegetable production systems. Agricultural Water Management 241:106377

doi: 10.1016/j.agwat.2020.106377
[16]

Thorup-Kristensen K. 2001. Root growth and soil nitrogen depletion by onion, lettuce, early cabbage and carrot. Acta Horticuturae 563:201−6

doi: 10.17660/actahortic.2001.563.25
[17]

Bai L, Deng H, Zhang X, Yu X, Li Y. 2016. Gibberellin Is Involved in Inhibition of Cucumber Growth and Nitrogen Uptake at Suboptimal Root-Zone Temperatures. PLoS One 23:e0156188

doi: 10.1371/journal.pone.0156188
[18]

Yuan B, Sun J, Kang Y, Nishiyama S. 2006. Response of cucumber to drip irrigation water under a rainshelter. Agricultural Water Management 81:145−58

doi: 10.1016/j.agwat.2005.03.002
[19]

Liang H, Hu K, Batchelor WD, Qin W, Li B. 2018. Developing a water and nitrogen management model for greenhouse vegetable production in China: sensitivity analysis and evaluation. Ecological Modelling 367:24−33

doi: 10.1016/j.ecolmodel.2017.10.016
[20]

Sun Y, Zhang J, Wang H, Wang L, Li H. 2019. Identifying optimal water and nitrogen inputs for high efficiency and low environment impacts of a greenhouse summer cucumber with a model method. Agricultural Water Management 212:23−34

doi: 10.1016/j.agwat.2018.08.028
[21]

Zhang J, Cao Z, Dai H, Zhang Z, Miao M. 2020. Yield, nitrogen uptake and nitrogen leaching of sensor-based fertigation-cultured tomato in a shallow groundwater region: effect of shallow groundwater on tomato irrigation. Journal of Agricultural Science 12:10

doi: 10.5539/jas.v12n1p10
[22]

Wang A, Gallardo M, Zhao W, Zhang Z, Miao M. 2019. Yield, nitrogen uptake and nitrogen leaching of tunnel greenhouse grown cucumber in a shallow groundwater region. Agricultural Water Management 217:73−80

doi: 10.1016/j.agwat.2019.02.026
[23]

Rajput TBS, Patel N. 2006. Water and nitrate movement in drip-irrigated onion under fertigation and irrigation treatments. Agricultural Water Management 79:293−311

doi: 10.1016/j.agwat.2005.03.009
[24]

Zotarelli L, Dukes MD, Scholberg JMS, Muñoz-Carpena R, Icerman J. 2009. Tomato nitrogen accumulation and fertilizer use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling. Agricultural Water Management 96:1247−58

doi: 10.1016/j.agwat.2009.03.019
[25]

Hu K, Li Y, Chen W, Chen D, Wei Y, et al. 2010. Modeling nitrate leaching and optimizing water and nitrogen management under irrigated maize in desert oases in Northwestern China. Journal of Environment Quality 39:667−77

doi: 10.2134/jeq2009.0204
[26]

Singandhupe RB, Rao GGSN, Patil NG, Brahmanand PS. 2003. Fertigation studies and irrigation scheduling in drip irrigation system in tomato crop (Lycopersicon esculentum L.). European Journal of Agronomy 19:327−40

doi: 10.1016/S1161-0301(02)00077-1
[27]

Antony E, Singandhupe RB. 2004. Impact of drip and surface irrigation on growth, yield and WUE of capsicum (Capsicum annum L.). Agricultural Water Management 65:121−32

doi: 10.1016/j.agwat.2003.07.003
[28]

Soto F, Gallardo M, Giménez C, Peña-Fleitas T, Thompson RB. 2014. Simulation of tomato growth, water and N dynamics using the EU-Rotate_N model in Mediterranean greenhouses with drip irrigation and fertigation. Agricultural Water Management 132:46−59

doi: 10.1016/j.agwat.2013.10.002
[29]

Suárez-Rey EM, Gallardo M, Romero-Gámez M, Giménez C, Rueda FJ. 2019. Sensitivity and uncertainty analysis in agro-hydrological modelling of drip fertigated lettuce crops under Mediterranean conditions. Computers and Electronics in Agriculture 162:630−50

doi: 10.1016/j.compag.2019.05.011
[30]

Sun Y, Hu K, Zhang K, Jiang L, Xu Y. 2012. Simulation of nitrogen fate for greenhouse cucumber grown under different water and fertilizer management using the EU-Rotate_N model. Agricultural Water Management 112:21−32

doi: 10.1016/j.agwat.2012.06.001
[31]

Dukes MD, Shedd M, Cardenas-Lailhacar B. 2009. Smart irrigation controllers: how do soil moisture sensor (SMS) irrigation controllers work? USA: University of Florida, IFAS Extension. pp. 1−5. https://edis.ifas.ufl.edu/publication/AE437

[32]

Talaviya T, Shah D, Patel N, Yagnik H, Shah M. 2020. Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial Intelligence in Agriculture 4:58−73

doi: 10.1016/j.aiia.2020.04.002
[33]

Shaffer MJ, Halvorson AD, Pierce FJ. 1991. Nitrate Leaching and Economic Analysis Package (NLEAP): model description and application. In Managing nitrogen for Groundwater Quality and Farm Profitability, eds. Follett RF, Keeney DR, Cruse RM. Madison, WI, USA: Soil Science Society of America. pp. 285–322

[34]

Ersahin S, Karaman MR. 2001. Estimating potential nitrate leaching in nitrogen fertilized and irrigated tomato using the computer model NLEAP. Agricultural Water Management 51:1−12

doi: 10.1016/S0378-3774(01)00117-2
[35]

Shaffer MJ, Delgado JA, Gross C, Follet RF, Gagliardi P. 2010. Simulation Processes for the Nitrogen Loss and Environmental Assessment Package (NLEAP). In Advances in Nitrogen Management for Water Quality, eds. Delgado JA, Follett RF. Ankeny, IA: Soil and Water Conservation Society.

[36]

Brisson N, Mary B, Ripoche D, Jeuffroy MH, Ruget F, et al. 1998. STICS: a generic model for the simulation of crops and their water and nitrogen balances I. Theory and parameterization applied to wheat and corn. Agronomie 18:311−46

doi: 10.1051/agro:19980501
[37]

Coucheney E, Buis S, Launay M, Constantin J, Mary B, et al. 2015. Accuracy, robustness and behavior of the STICS soil–crop model for plant, water and nitrogen outputs: evaluation over a wide range of agro-environmental conditions in France. Environmental Modelling & Software 64:177−90

doi: 10.1016/j.envsoft.2014.11.024
[38]

Doltra J, Muñoz P. 2010. Simulation of nitrogen leaching from a fertigated crop rotation in a Mediterranean climate using the EU-Rotate_N and Hydrus-2D models. Agricultural Water Management 97:277−85

doi: 10.1016/j.agwat.2009.09.019
[39]

Stöckle CO, Donatelli M, Nelson R. 2003. CropSyst, a cropping systems simulation model. European Journal of Agronomy 18:289−307

doi: 10.1016/S1161-0301(02)00109-0
[40]

Suárez-Rey EM, Romero-Gámez M, Giménez C, Thompson RB, Gallardo M. 2016. Use of EU-Rotate_N and CropSyst models to predict yield, growth and water and N dynamics of fertigated leafy vegetables in a Mediterranean climate and to determine N fertilizer requirements. Agricultural Systems 149:150−64

doi: 10.1016/j.agsy.2016.09.007
[41]

Rahn CR, Zhang K, Lillywhite RD, Ramos C, Doltra J, et al. 2010. European Decision Support System, EU-Rotate N to predict environmental and economic consequences of the management of nitrogen fertiliser in crop rotations. European Journal of Horticultural Science 75:20−32

[42]

Nendel C, Venezia A, Piro F, Ren T, Lillywhite RD, et al. 2013. The performance of the EU-Rotate_N model in predicting the growth and nitrogen uptake of rotations of field vegetable crops in a Mediterranean environment. The Journal of Agricultural Science. Sci 151:538−55

doi: 10.1017/S0021859612000688
[43]

Deng J, Zhu B, Zhou Z, Zheng X, Li C, et al. 2011. Modeling nitrogen loadings from agricultural soils in southwest China with modified DNDC. Journal of Geophysical Research Atmospheres 116:G02020

doi: 10.1029/2010jg001609
[44]

Li H, Wang L, Qiu J, Li C, Gao M, et al. 2014. Calibration of DNDC model for nitrate leaching from an intensively cultivated region of Northern China. Geoderma 223–225:108−18

doi: 10.1016/j.geoderma.2014.01.002
[45]

Uzoma KC, Smith W, Grant B, Desjardins RL, Gao X, et al. 2015. Assessing the effects of agricultural management on nitrous oxide emissions using flux measurements and the DNDC model. Agriculture, Ecosystems & Environment 206:71−83

doi: 10.1016/j.agee.2015.03.014
[46]

Dutta B, Smith WN, Grant BB, Pattey E, Desjardins RL, et al. 2016. Model development in DNDC for the prediction of evapotranspiration and water use in temperate field cropping systems. Environmental Modelling & Software 80:9−25

doi: 10.1016/j.envsoft.2016.02.014
[47]

Zhang Y, Niu H. 2016. The development of the DNDC plant growth sub-model and the application of DNDC in agriculture: A review. Agriculture, Ecosystems & Environment 230:271−82

doi: 10.1016/j.agee.2016.06.017
[48]

Zhang J, Li H, Deng J, Wang L. 2021. Assessing impacts of nitrogen management on nitrous oxide emissions and nitrate leaching from greenhouse vegetable systems using a biogeochemical model. Geoderma 382:114701

doi: 10.1016/j.geoderma.2020.114701
[49]

Yang D, Bian Z, Zhang K, Xiong K, Lei S. 2017. Modeling Root Growth, Crop Growth and N Uptake of Winter Wheat Based on SWMS_2D: Model and Validation. Revista Brasileira De Ciência Do Solo 41:e0150064

doi: 10.1590/18069657rbcs20150064
[50]

Guo R, Nendel C, Rahn C, Jiang C, Chen Q. 2010. Tracking nitrogen losses in a greenhouse crop rotation experiment in North China using the EU-Rotate_N simulation model. Environmental Pollution 158:2218−29

doi: 10.1016/j.envpol.2010.02.014
[51]

Sun Y, Hu K, Fan Z, Wei Y, Lin S, Wang J. 2013. Simulating the fate of nitrogen and optimizing water and nitrogen management of greenhouse tomato in North China using the EU-Rotate_N model. Agricultural Water Management 128:72−84

doi: 10.1016/j.agwat.2013.06.016
[52]

Kahlown MA, Ashrafb M, Zia-ul-Haq. 2005. Effect of shallow groundwater table on crop water requirements and crop yields. Agricultural Water Management 76:24−35

doi: 10.1016/j.agwat.2005.01.005
[53]

Ghamarnia H, Golamian M, Sepehri S, Arji I, Norozpour S. 2013. The contribution of shallow groundwater by safflower (Carthamus tinctorius L.) under high water table conditions, with and without supplementary irrigation. Irrigation Science 31:285−99

doi: 10.1007/s00271-011-0304-2
[54]

Ghamarnia H, Golamian M, Sepehri S, Arji I. 2011. Shallow groundwater use by Safflower (Carthamus tinctorius L.) in a semi-arid region. Irrigation Science 29:147−56

doi: 10.1007/s00271-010-0226-4
[55]

Gao X, Huo Z, Qu Z, Xu X, Huang G, et al. 2017. Modeling contribution of shallow groundwater to evapotranspiration and yield of maize in an arid area. Scientific Reports 7:43122

doi: 10.1038/srep43122
[56]

IPCC. 2013. Data Distribution Centre (Accessed 4 November 2017). https://ipcc-ddc.cru.uea.ac.uk

[57]

Bremner JM. 2009. Determination of nitrogen in soil by the Kjeldahl method. Cambridge University Press.

[58]

Zhang K, Li C, Hu Z, Huang S, Chen J, et al. 2020. Simulations of water cycle in the soil-crop system: model improvement and validation. Applied Ecology and Environmental Research 18:2163−77

doi: 10.15666/aeer/1802_21632177
[59]

Nash JE, Sutcliffe JV. 1970. River flow forecasting through conceptual model part I — A discussion of principles. Journal of Hydrology 10:282−90

doi: 10.1016/0022-1694(70)90255-6
[60]

Nendel C. 2009. Evaluation of best management practices for N fertilisation in regional field vegetable production with a small-scale simulation model. European Journal of Agronomy 30:110−18

doi: 10.1016/j.eja.2008.08.003
[61]

Willmott J. 1981. On the validation of models. Physical Geography 2:184−94

doi: 10.1080/02723646.1981.10642213
[62]

Doltra J, Muñoz P, Antón A, Ariño J. 2010. Soil and plant nitrogen dynamics of a tomato crop under different fertilization strategies. Acta Horticulturae 852:207−14

doi: 10.17660/ActaHortic.2010.852.25
[63]

Novák V, Hlaváčiková H. 2018. Interaction of Groundwater and Soil Water. In Applied Soil Hydrology. Switzerland: Springer Nature. pp. 171-88. https://doi.org/10.1007/978-3-030-01806-1_12

[64]

Xia J, Zhang S, Zhao X, Liu J, Chen Y. 2016. Effects of different groundwater depths on the distribution characteristics of soil-Tamarix water contents and salinity under saline mineralization conditions. CATENA 142:166−176

doi: 10.1016/j.catena.2016.03.005
[65]

Yang T, Ala M, Guan N, Wang A. 2021. The effects of groundwater depth on the soil evaporation in Horqin Sandy Land, China. Chinese Geographical Science 31:727−34

doi: 10.1007/s11769-021-1220-x
[66]

Williams MR, Buda AR, Elliott HA, Hamlett J, Boyer EW, et al. 2014. Groundwater flow path dynamics and nitrogen transport potential in the riparian zone of an agricultural headwater catchment. Journal of Hydrology 511:870−79

doi: 10.1016/j.jhydrol.2014.02.033
[67]

Jiao X, Maimaitiyiming A, Salahou M, Liu K, Guo W. 2017. Impact of groundwater level on nitrate nitrogen accumulation in the vadose zone beneath a cotton field. Water 9:171

doi: 10.3390/w9030171