[1] |
Christenhusz MJM, Byng JW. 2016. The number of known plants species in the world and its annual increase. Phytotaxa 261:201−17 doi: 10.11646/phytotaxa.261.3.1 |
[2] |
Sliwinska E, Bewley JD, Gallagher R. 2014. Overview of Seed Development, Anatomy and Morphology. In Seeds: The Ecology of Regeneration in Plant Communities. Oxfordshire: CAB International. pp. 1−17. https://doi.org/10.1079/9781780641836.00 |
[3] |
Bhatnagar SP, Sawhney V. 1981. Endosperm—Its morphology, ultrastructure, and histochemistry. International Review of Cytology 73:55−102 doi: 10.1016/s0074-7696(08)61286-3 |
[4] |
Olsen OA. 2007. Endosperm: developmental and molecular biology. Plant Cell Monographs. Heidelberg: Springer Berlin. pp. 26−43. https://doi.org/10.1007/978-3-540-71235-0 |
[5] |
Garcia D, Saingery V, Chambrier P, Mayer U, Jürgens G, et al. 2003. Arabidopsis haiku mutants reveal new controls of seed size by endosperm. Plant Physiology 131:1661−70 doi: 10.1104/pp.102.018762 |
[6] |
Luo M, Dennis ES, Berger F, Peacock WJ, Chaudhury A. 2005. MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. PNAS 102:17531−36 doi: 10.1073/pnas.0508418102 |
[7] |
Zhou Y, Zhang X, Kang X, Zhao X, Zhang X, et al. 2009. SHORT HYPOCOTYL UNDER BLUE1 associates with MINISEED3 and HAIKU2 promoters in vivo to regulate Arabidopsis seed development. The Plant Cell 21:106−17 doi: 10.1105/tpc.108.064972 |
[8] |
Wang A, Garcia D, Zhang H, Feng K, Chaudhury A, et al. 2010. The VQ motif protein IKU1 regulates endosperm growth and seed size in Arabidopsis. The Plant Journal 63:670−79 doi: 10.1111/j.1365-313X.2010.04271.x |
[9] |
Kang X, Li W, Zhou Y, Ni M. 2013. A WRKY transcription factor recruits the SYG1-like protein SHB1 to activate gene expression and seed cavity enlargement. PLoS Genetics 9:e1003347 doi: 10.1371/journal.pgen.1003347 |
[10] |
Chaudhury AM, Ming L, Miller C, Craig S, Dennis ES, et al. 1997. Fertilization-independent seed development in Arabidopsis thaliana. PNAS 94:4223−28 doi: 10.1073/pnas.94.8.4223 |
[11] |
Xiong H, Wang W, Sun M-X. 2021. Endosperm development is an autonomously programmed process independent of embryogenesis. The Plant Cell 33:1151−60 doi: 10.1093/plcell/koab007 |
[12] |
Denney JO. 1992. Xenia includes metaxenia. HortScience 27:722−28 doi: 10.21273/HORTSCI.27.7.722 |
[13] |
Wang Z, Chen M, Chen T, Xuan L, Li Z, et al. 2014. TRANSPARENT TESTA2 regulates embryonic fatty acid biosynthesis by targeting FUSCA3 during the early developmental stage of Arabidopsis seeds. Plant Journal 77:757−69 doi: 10.1111/tpj.12426 |
[14] |
Chen M, Xuan L, Wang Z, Zhou L, Li Z, et al. 2014. TRANSPARENT TESTA8 inhibits seed fatty acid accumulation by targeting several seed development regulators in Arabidopsis. Plant Physiology 165:905−16 doi: 10.1104/pp.114.235507 |
[15] |
Chen M, Zhang B, Li C, Kulaveerasingam H, Chew FT, et al. 2015. TRANSPARENT TESTA GLABRA1 regulates the accumulation of seed storage reserves in Arabidopsis. Plant Physiology 169:391−402 doi: 10.1104/pp.15.00943 |
[16] |
Li C, Zhang B, Chen B, Ji L, Yu H. 2018. Site-specific phosphorylation of TRANSPARENT TESTA GLABRA1 mediates carbon partitioning in Arabidopsis seeds. Nature Communications 9:571 doi: 10.1038/s41467-018-03013-5 |
[17] |
Shi L, Katavic V, Yu Y, Kunst L, Haughn G. 2012. Arabidopsis gla |
[18] |
Li C, Chen B, Yu H. 2022. Splicing-mediated activation of SHAGGY-like kinases underpinning carbon partitioning in Arabidopsis seeds. The Plant Cell 34:2730−46 doi: 10.1093/plcell/koac110 |
[19] |
Vogiatzaki E, Baroux C, Jung JY, Poirier Y. 2017. PHO1 exports phosphate from the chalazal seed coat to the embryo in developing Arabidopsis seeds. Current Biology 27:2893−900 doi: 10.1016/j.cub.2017.08.026 |
[20] |
Sosso D, Luo D, Li Q, Sasse J, Yang J, et al. 2015. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nature Genetics 47:1489−93 doi: 10.1038/ng.3422 |
[21] |
Appelhagen I, Thiedig K, Nordholt N, Schmidt N, Huep G, et al. 2014. Update on transparent testa mutants from Arabidopsis thaliana: characterisation of new alleles from an isogenic collection. Planta 240:955−70 doi: 10.1007/s00425-014-2088-0 |
[22] |
Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker WQ, et al. 1996. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. The Plant Cell 8:155−68 doi: 10.1105/tpc.8.2.155 |
[23] |
Klucher KM, Chow H, Reiser L, Fischer RL. 1996. The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. The Plant Cell 8:137−53 doi: 10.1105/tpc.8.2.137 |
[24] |
Villanueva JM, Broadhvest J, Hauser BA, Meister RJ, Schneitz K, et al. 1999. INNER NO OUTER regulates abaxial–adaxial patterning in Arabidopsis ovules. Genes & Development 13:3160−69 doi: 10.1101/gad.13.23.3160 |
[25] |
Li N, Li Y. 2015. Maternal control of seed size in plants. Journal of Experimental Botany 66:1087−97 doi: 10.1093/jxb/eru549 |
[26] |
Li N, Li Y. 2014. Ubiquitin-mediated control of seed size in plants. Frontiers in Plant Science 5:332 doi: 10.3389/fpls.2014.00332 |
[27] |
Vanhaeren H, Chen Y, Vermeersch M, De Milde L, De Vleeschhauwer V, et al. 2020. UBP12 and UBP13 negatively regulate the activity of the ubiquitin-dependent peptidases DA1, DAR1 and DAR2. eLife 9:e52276 doi: 10.7554/elife.52276 |
[28] |
Garcia D, Fitz Gerald JN, Berger F. 2005. Maternal control of integument cell elongation and zygotic control of endosperm growth are coordinated to determine seed size in Arabidopsis. The Plant Cell 17:52−60 doi: 10.1105/tpc.104.027136 |
[29] |
Jofuku KD, Omidyar PK, Gee Z, Okamuro JK. 2005. Control of seed mass and seed yield by the floral homeotic gene APETALA2. PNAS 102:3117−22 doi: 10.1073/pnas.0409893102 |
[30] |
Leon-Kloosterziel KM, Keijzer CJ, Koornneef M. 1994. A seed shape mutant of Arabidopsis that is affected in integument development. The Plant Cell 6:385−92 doi: 10.2307/3869758 |
[31] |
McAbee JM, Hill TA, Skinner DJ, Izhaki A, Hauser BA, et al. 2006. ABERRANT TESTA SHAPE encodes a KANADI family member, linking polarity determination to separation and growth of Arabidopsis ovule integuments. The Plant Journal 46:522−31 doi: 10.1111/j.1365-313X.2006.02717.x |
[32] |
Kirkbride RC, Lu J, Zhang C, Mosher RA, Baulcombe DC, et al. 2019. Maternal small RNAs mediate spatial-temporal regulation of gene expression, imprinting, and seed development in Arabidopsis. PNAS 116:2761−66 doi: 10.1073/pnas.1807621116 |
[33] |
Grover JW, Burgess D, Kendall T, Baten A, Pokhrel S, et al. 2020. Abundant expression of maternal siRNAs is a conserved feature of seed development. PNAS 117:15305−15 doi: 10.1073/pnas.2001332117 |
[34] |
Lu J, Zhang C, Baulcombe DC, Chen ZJ. 2012. Maternal siRNAs as regulators of parental genome imbalance and gene expression in endosperm of Arabidopsis seeds. PNAS 109:5529−34 doi: 10.1073/pnas.1203094109 |
[35] |
Adamski NM, Anastasiou E, Eriksson S, O'Neill CM, Lenhard M. 2009. Local maternal control of seed size by KLUH/CYP78A5-dependent growth signaling. PNAS 106:20115−20 doi: 10.1073/pnas.0907024106 |
[36] |
Fang W, Wang Z, Cui R, Li J, Li Y. 2012. Maternal control of seed size by EOD3/CYP78A6 in Arabidopsis thaliana. The Plant Journal 70:929−39 doi: 10.1111/j.1365-313x.2012.04907.x |
[37] |
Wang J, Schwab R, Czech B, Mica E, Weigel D. 2008. Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. The Plant Cell 20:1231−43 doi: 10.1105/tpc.108.058180 |
[38] |
Li Y, Yu Y, Liu X, Zhang X, Su Y. 2021. The Arabidopsis MATERNAL EFFECT EMBRYO ARREST45 protein modulates maternal auxin biosynthesis and controls seed size by inducing AINTEGUMENTA. The Plant Cell 33:1907−26 doi: 10.1093/plcell/koab084 |
[39] |
Robert HS, Park C, Gutièrrez CL, Wójcikowska B, Pěnčík A, et al. 2018. Maternal auxin supply contributes to early embryo patterning in Arabidopsis. Nature Plants 4:548−53 doi: 10.1038/s41477-018-0204-z |
[40] |
Shi C, Luo P, Du Y, Chen H, Huang X, et al. 2019. Maternal control of suspensor programmed cell death via gibberellin signaling. Nature Communications 10:3484 doi: 10.1038/s41467-019-11476-3 |
[41] |
Song X, Huang W, Shi M, Zhu M, Lin H. 2007. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics 39:623−30 doi: 10.1038/ng2014 |
[42] |
Bednarek J, Boulaflous A, Girousse C, Ravel C, Tassy C, et al. 2012. Down-regulation of the TaGW2 gene by RNA interference results in decreased grain size and weight in wheat. Journal of Experimental Botany 63:5945−55 doi: 10.1093/jxb/ers249 |
[43] |
Li Q, Li L, Yang X, Warburton ML, Bai G, et al. 2010. Relationship, evolutionary fate and function of two maize co-orthologs of rice GW2 associated with kernel size and weight. BMC Plant Biology 10:143 doi: 10.1186/1471-2229-10-143 |
[44] |
Xiong M, Feng G, Gao Q, Zhang C, Li Q, et al. 2022. Brassinosteroid regulation in rice seed biology. Seed Biology 1:2 doi: 10.48130/SeedBio-2022-0002 |
[45] |
Nagasawa N, Hibara KI, Heppard EP, Vander Velden KA, Luck S, et al. 2013. GIANT EMBRYO encodes CYP78A13, required for proper size balance between embryo and endosperm in rice. Plant Journal 75:592−605 doi: 10.1111/tpj.12223 |
[46] |
Yang W, Gao M, Yin X, Liu J, Xu Y, et al. 2013. Control of rice embryo development, shoot apical meristem maintenance, and grain yield by a novel cytochrome p450. Molecular Plant 6:1945−60 doi: 10.1093/mp/sst107 |
[47] |
Bellido AM, Distéfano AM, Setzes N, Cascallares MM, Oklestkova J, et al. 2022. A mitochondrial ADXR–ADX–P450 electron transport chain is essential for maternal gametophytic control of embryogenesis in Arabidopsis. PNAS 119:e2000482119 doi: 10.1073/pnas.2000482119 |
[48] |
Lotan T, Ohto Ma, Yee KM, West MA, Lo R, et al. 1998. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93:1195−205 doi: 10.1016/S0092-8674(00)81463-4 |
[49] |
Song J, Xie X, Chen C, Shu J, Thapa RK, et al. 2021. LEAFY COTYLEDON1 expression in the endosperm enables embryo maturation in Arabidopsis. Nature Communications 12:3963 doi: 10.1038/s41467-021-24234-1 |
[50] |
Parcy F, Valon C, Kohara A, Miséra S, Giraudat J. 1997. The ABSCISIC ACID-INSENSITIVE3, FUSCA3, and LEAFY COTYLEDON1 loci act in concert to control multiple aspects of Arabidopsis seed development. The Plant Cell 9:1265−77 doi: 10.1105/tpc.9.8.1265 |
[51] |
Horstman A, Li M, Heidmann I, Weemen M, Chen B, et al. 2017. The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis. Plant Physiology 175:848−57 doi: 10.1104/pp.17.00232 |
[52] |
Chen B, Maas L, Figueiredo D, Zhong Y, Reis R, et al. 2022. BABY BOOM regulates early embryo and endosperm development. PNAS 119:e2201761119 doi: 10.1073/pnas.2201761119 |
[53] |
Méndez-Hernández HA, Ledezma-Rodríguez M, Avilez-Montalvo RN, Juárez-Gómez YL, Skeete A, et al. 2019. Signaling overview of plant somatic embryogenesis. Frontiers in Plant Science 10:77 doi: 10.3389/fpls.2019.00077 |
[54] |
Zhao P, Shi C, Wang L, Sun M. 2022. The parental contributions to early plant embryogenesis and the concept of maternal-to-zygotic transition in plants. Current Opinion in Plant Biology 65:102144 doi: 10.1016/j.pbi.2021.102144 |
[55] |
Li L, Weigel D. 2021. One hundred years of hybrid necrosis: hybrid autoimmunity as a window into the mechanisms and evolution of plant–pathogen interactions. Annual Review of Phytopathology 59:213−37 doi: 10.1146/annurev-phyto-020620-114826 |
[56] |
Kawanabe T, Ishikura S, Miyaji N, Sasaki T, Wu LM, et al. 2016. Role of DNA methylation in hybrid vigor in Arabidopsis thaliana. PNAS 113:E6704−E6711 doi: 10.1073/pnas.1613372113 |
[57] |
Wang L, Greaves IK, Groszmann M, Wu LM, Dennis ES, Peacock WJ. 2015. Hybrid mimics and hybrid vigor in Arabidopsis. PNAS 112:E4959−E4967 doi: 10.1073/pnas.1514190112 |
[58] |
Jahnke S, Sarholz B, Thiemann A, Kühr V, Gutiérrez-Marcos JF, et al. 2010. Heterosis in early seed development: a comparative study of F1 embryo and endosperm tissues 6 days after fertilization. Theoretical and Applied Genetics 120:389−400 doi: 10.1007/s00122-009-1207-y |
[59] |
Labroo MR, Studer AJ, Rutkoski JE. 2021. Heterosis and hybrid crop breeding: a multidisciplinary review. Frontiers in Genetics 12:643761 doi: 10.3389/fgene.2021.643761 |
[60] |
Liu W, Zhang Y, He H, He G, Deng X. 2022. From hybrid genomes to heterotic trait output: Challenges and opportunities. Current Opinion in Plant Biology 66:102193 doi: 10.1016/j.pbi.2022.102193 |
[61] |
Wang K. 2020. Fixation of hybrid vigor in rice: synthetic apomixis generated by genome editing. aBIOTECH 1:15−20 doi: 10.1007/s42994-019-00001-1 |
[62] |
Wang Q, Wang M, Chen J, Qi W, Lai J, et al. 2022. ENB1 encodes a cellulose synthase 5 that directs synthesis of cell wall ingrowths in maize basal endosperm transfer cells. The Plant Cell 34:1054−74 doi: 10.1093/plcell/koab312 |
[63] |
Rodrigues JA, Hsieh PH, Ruan D, Nishimura T, Sharma MK, et al. 2021. Divergence among rice cultivars reveals roles for transposition and epimutation in ongoing evolution of genomic imprinting. PNAS 118:e2104445118 doi: 10.1073/pnas.2104445118 |
[64] |
Luo M, Taylor JM, Spriggs A, Zhang H, Wu X, et al. 2011. A genome-wide survey of imprinted genes in rice seeds reveals imprinting primarily occurs in the endosperm. PLoS Genetics 7:e1002125 doi: 10.1371/journal.pgen.1002125 |
[65] |
Hsieh TF, Ibarra CA, Silva P, Zemach A, Eshed-Williams L, et al. 2009. Genome-wide demethylation of Arabidopsis endosperm. Science 324:1451−4 doi: 10.1126/science.1172417 |
[66] |
Gehring M, Bubb KL, Henikoff S. 2009. Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science 324:1447−51 doi: 10.1126/science.1171609 |
[67] |
Batista RA, Köhler CJG. 2020. Genomic imprinting in plants — revisiting existing models. Genes & Development 34:24−36 doi: 10.1101/gad.332924.119 |
[68] |
Choi Y, Gehring M, Johnson L, Hannon M, Harada JJ, et al. 2002. DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110:33−42 doi: 10.1016/S0092-8674(02)00807-3 |
[69] |
Xiao W, Gehring M, Choi Y, Margossian L, Pu H, et al. 2003. Imprinting of the MEA Polycomb gene is controlled by antagonism between MET1 methyltransferase and DME glycosylase. Developmental Cell 5:891−901 doi: 10.1016/S1534-5807(03)00361-7 |
[70] |
Xiao W, Brown RC, Lemmon BE, Harada JJ, Goldberg RB, Fischer RL. 2006. Regulation of seed size by hypomethylation of maternal and paternal genomes. Plant Physiology 142:1160−68 doi: 10.1104/pp.106.088849 |
[71] |
Tiwari S, Schulz R, Ikeda Y, Dytham L, Bravo J, et al. 2008. MATERNALLY EXPRESSED PAB C-TERMINAL, a novel imprinted gene in Arabidopsis, encodes the conserved C-terminal domain of polyadenylate binding proteins. The Plant Cell 20:2387−98 doi: 10.1105/tpc.108.061929 |
[72] |
Jullien PE, Kinoshita T, Ohad N, Berger F. 2006. Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting. The Plant Cell 18:1360−72 doi: 10.1105/tpc.106.041178 |
[73] |
Kinoshita T, Miura A, Choi Y, Kinoshita Y, Cao X, et al. 2004. One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science 303:521−23 doi: 10.1126/science.1089835 |
[74] |
Gehring M, Huh JH, Hsieh T-F, Penterman J, Choi Y, et al. 2006. DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation. Cell 124:495−506 doi: 10.1016/j.cell.2005.12.034 |
[75] |
Jullien PE, Katz A, Oliva M, Ohad N, Berger F. 2006. Polycomb group complexes self-regulate imprinting of the Polycomb group gene MEDEA in Arabidopsis. Current Biology 16:486−92 doi: 10.1016/j.cub.2006.01.020 |
[76] |
Martínez G, Panda K, Köhler C, Slotkin RK. 2016. Silencing in sperm cells is directed by RNA movement from the surrounding nurse cell. Nature Plants 2:16030 doi: 10.1038/nplants.2016.30 |
[77] |
Satyaki PRV, Gehring M. 2019. Paternally acting canonical RNA-directed DNA methylation pathway genes sensitize Arabidopsis endosperm to paternal genome dosage. The Plant Cell 31:1563−78 doi: 10.1105/tpc.19.00047 |
[78] |
Ibarra CA, Feng X, Schoft VK, Hsieh TF, Uzawa R, et al. 2012. Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science 337:1360−64 doi: 10.1126/science.1224839 |
[79] |
Calarco JP, Borges F, Donoghue MT, Van Ex F, Jullien PE, et al. 2012. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151:194−205 doi: 10.1016/j.cell.2012.09.001 |
[80] |
Pignatta D, Erdmann RM, Scheer E, Picard CL, Bell GW, et al. 2014. Natural epigenetic polymorphisms lead to intraspecific variation in Arabidopsis gene imprinting. eLife 3:e03198 doi: 10.7554/eLife.03198 |
[81] |
Gent JI, Higgins KM, Swentowsky KW, Fu F, Zeng Y, et al. 2022. The maize gene maternal derepression of r1 encodes a DNA glycosylase that demethylates DNA and reduces siRNA expression in the endosperm. The Plant Cell 34:3685−701 doi: 10.1093/plcell/koac199 |
[82] |
Schon MA, Nodine MD. 2017. Widespread contamination of Arabidopsis embryo and endosperm transcriptome data sets. The Plant Cell 29:608−17 doi: 10.1105/tpc.16.00845 |
[83] |
Köhler C, Page DR, Gagliardini V, Grossniklaus U. 2005. The Arabidopsis thaliana MEDEA Polycomb group protein controls expression of PHERES1 by parental imprinting. Nature Genetics 37:28−30 doi: 10.1038/ng1495 |
[84] |
Köhler C, Hennig L, Spillane C, Pien S, Gruissem W, et al. 2003. The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Genes & Development 17:1540−53 doi: 10.1101/gad.257403 |
[85] |
Batista RA, Moreno-Romero J, Qiu Y, van Boven J, Santos-González J, et al. 2019. The MADS-box transcription factor PHERES1 controls imprinting in the endosperm by binding to domesticated transposons. eLife 8:e50541 doi: 10.7554/elife.50541 |
[86] |
Hornslien KS, Miller JR, Grini PE. 2019. Regulation of parent-of-origin allelic expression in the endosperm. Plant Physiology 180:1498−519 doi: 10.1104/pp.19.00320 |
[87] |
Moreno-Romero J, Jiang H, Santos-González J, Köhler C. 2016. Parental epigenetic asymmetry of PRC 2-mediated histone modifications in the Arabidopsis endosperm. EMBO Journal 35:1298−311 doi: 10.15252/embj.201593534 |
[88] |
Moreno-Romero J, Toro-De León D, Yadav VK, Santos-González J, Köhler C. 2019. Epigenetic signatures associated with imprinted paternally expressed genes in the Arabidopsis endosperm. Genome Biology 20:41 doi: 10.1186/s13059-018-1612-0 |
[89] |
Autran D, Baroux C, Raissig MT, Lenormand T, Wittig M, et al. 2011. Maternal epigenetic pathways control parental contributions to Arabidopsis early embryogenesis. Cell 145:707−19 doi: 10.1016/j.cell.2011.04.014 |
[90] |
Wolff P, Jiang H, Wang G, Santos-González J, Köhler C. 2015. Paternally expressed imprinted genes establish postzygotic hybridization barriers in Arabidopsis thaliana. eLife 4:e10074 doi: 10.7554/eLife.10074 |
[91] |
Raissig MT, Baroux C, Grossniklaus U. 2011. Regulation and flexibility of genomic imprinting during seed development. The Plant Cell 23:16−26 doi: 10.1105/tpc.110.081018 |
[92] |
Pignatta D, Novitzky K, Satyaki PRV, Gehring M. 2018. A variably imprinted epiallele impacts seed development. PLoS Genetics 14:e1007469 doi: 10.1371/journal.pgen.1007469 |
[93] |
Dai D, Mudunkothge JS, Galli M, Char SN, Davenport R, et al. 2022. Paternal imprinting of dosage-effect defective1 contributes to seed weight xenia in maize. Nature Communications 13:5366 doi: 10.1038/s41467-022-33055-9 |
[94] |
Adams S, Vinkenoog R, Spielman M, Dickinson HG, Scott RJ. 2000. Parent-of-origin effects on seed development in Arabidopsis thaliana require DNA methylation. Development 127:2493−502 doi: 10.1242/dev.127.11.2493 |
[95] |
Scott RJ, Spielman M, Bailey J, Dickinson HG. 1998. Parent-of-origin effects on seed development in Arabidopsis thaliana. Development 125:3329−41 doi: 10.1242/dev.125.17.3329 |
[96] |
Leblanc O, Pointe C, Hernandez M. 2002. Cell cycle progression during endosperm development in Zea mays depends on parental dosage effects. The Plant Journal 32:1057−66 doi: 10.1046/j.1365-313X.2002.01491.x |
[97] |
Sekine D, Ohnishi T, Furuumi H, Ono A, Yamada T, et al. 2013. Dissection of two major components of the post-zygotic hybridization barrier in rice endosperm. The Plant Journal 76:792−99 doi: 10.1111/tpj.12333 |
[98] |
Wang L, Yuan J, Ma Y, Jiao W, Ye W, et al. 2018. Rice interploidy crosses disrupt epigenetic regulation, gene expression, and seed development. Molecular Plant 11:300−14 doi: 10.1016/j.molp.2017.12.006 |
[99] |
Kradolfer D, Wolff P, Jiang H, Siretskiy A, Köhler C. 2013. An imprinted gene underlies postzygotic reproductive isolation in Arabidopsis thaliana. Developmental Cell 26:525−35 doi: 10.1016/j.devcel.2013.08.006 |
[100] |
Wang G, Jiang H, de León GDT, Martinez G, Köhler C. 2018. Sequestration of a transposon-derived siRNA by a target mimic imprinted gene induces postzygotic reproductive isolation in Arabidopsis. Developmental Cell 46:696−705.E4 doi: 10.1016/j.devcel.2018.07.014 |
[101] |
Martinez G, Wolff P, Wang Z, Moreno-Romero J, Santos-González J, et al. 2018. Paternal easiRNAs regulate parental genome dosage in Arabidopsis. Nature Genetics 50:193−98 doi: 10.1038/s41588-017-0033-4 |
[102] |
Jiang H, Moreno-Romero J, Santos-González J, De Jaeger G, Gevaert K, et al. 2017. Ectopic application of the repressive histone modification H3K9me2 establishes post-zygotic reproductive isolation in Arabidopsis thaliana. Genes & Development 31:1272−87 doi: 10.1101/gad.299347.117 |
[103] |
Erdmann RM, Satyaki PR, Klosinska M, Gehring M. 2017. A small RNA pathway mediates allelic dosage in endosperm. Cell Reports 21:3364−72 doi: 10.1016/j.celrep.2017.11.078 |
[104] |
Huang F, Zhu Qh, Zhu A, Wu X, Xie L, et al. 2017. Mutants in the imprinted PICKLE RELATED 2 gene suppress seed abortion of fertilization independent seed class mutants and paternal excess interploidy crosses in Arabidopsis. The Plant Journal 90:383−95 doi: 10.1111/tpj.13500 |
[105] |
Lafon-Placette C, Hatorangan MR, Steige KA, Cornille A, Lascoux M, et al. 2018. Paternally expressed imprinted genes associate with hybridization barriers in Capsella. Nature Plants 4:352−57 doi: 10.1038/s41477-018-0161-6 |
[106] |
Schatlowski N, Wolff P, Santos-González J, Schoft V, Siretskiy A, et al. 2014. Hypomethylated pollen bypasses the interploidy hybridization barrier in Arabidopsis. The Plant Cell 26:3556−68 doi: 10.1105/tpc.114.130120 |
[107] |
Huc J, Dziasek K, Pachamuthu K, Woh T, Köhler C, et al. 2022. Bypassing reproductive barriers in hybrid seeds using chemically induced epimutagenesis. The Plant Cell 34:989−1001 doi: 10.1093/plcell/koab284 |
[108] |
Bayer M, Nawy T, Giglione C, Galli M, Meinnel T, et al. 2009. Paternal control of embryonic patterning in Arabidopsis thaliana. Science 323:1485−88 doi: 10.1126/science.1167784 |
[109] |
Ueda M, Aichinger E, Gong W, Groot E, Verstraeten I, et al. 2017. Transcriptional integration of paternal and maternal factors in the Arabidopsis zygote. Genes & Development 31:617−27 doi: 10.1101/gad.292409.116 |
[110] |
Anderson SN, Johnson CS, Chesnut J, Jones DS, Khanday I, et al. 2017. The zygotic transition is initiated in unicellular plant zygotes with asymmetric activation of parental genomes. Developmental Cell 43:349−58.E4 doi: 10.1016/j.devcel.2017.10.005 |
[111] |
Khanday I, Skinner D, Yang B, Mercier R, Sundaresan V. 2019. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature 565:91−5 doi: 10.1038/s41586-018-0785-8 |
[112] |
Zhao Y, Wang S, Wu W, Li L, Jiang T, Zheng B. 2018. Clearance of maternal barriers by paternal miR159 to initiate endosperm nuclear division in Arabidopsis. Nature Communications 9:5011 doi: 10.1038/s41467-018-07429-x |
[113] |
Kasahara RD, Notaguchi M, Nagahara S, Suzuki T, Susaki D, et al. 2016. Pollen tube contents initiate ovule enlargement and enhance seed coat development without fertilization. Science Advances 2:e1600554 doi: 10.1126/sciadv.1600554 |
[114] |
Heydlauff J, Serbes IE, Vo D, Mao Y, Gieseking S, et al. 2022. Dual and opposing roles of EIN3 reveal a generation conflict during seed growth. Molecular Plant 15:363−71 doi: 10.1016/j.molp.2021.11.015 |
[115] |
Birchler JA. 2014. Interploidy hybridization barrier of endosperm as a dosage interaction. Frontiers in Plant Science 5:281 doi: 10.3389/fpls.2014.00281 |
[116] |
Kato A, Birchler JA. 2006. Induction of tetraploid derivatives of maize inbred lines by nitrous oxide gas treatment. Journal of Heredity 97:39−44 doi: 10.1093/jhered/esj007 |
[117] |
Li C, Gong X, Zhang B, Liang Z, Wong CE, et al. 2020. TOP1α,UPF1, and TTG2 regulate seed size in a parental dosage–dependent manner. PLoS Biology 18:e3000930 doi: 10.1371/journal.pbio.3000930 |
[118] |
Picard CL, Povilus RA, Williams BP, Gehring M. 2021. Transcriptional and imprinting complexity in Arabidopsis seeds at single-nucleus resolution. Nature Plants 7:730−38 doi: 10.1038/s41477-021-00922-0 |
[119] |
Povilus RA, Gehring M. 2022. Maternal-filial transfer structures in endosperm: A nexus of nutritional dynamics and seed development. Current Opinion in Plant Biology 65:102121 doi: 10.1016/j.pbi.2021.102121 |
[120] |
Haig D. 2013. Kin conflict in seed development: an interdepengdent but fractious collective. Annual Review of Cell and Developmental Biology 29:189−211 doi: 10.1146/annurev-cellbio-101512-122324 |
[121] |
Zhang B, Li C, Li Y, Yu H. 2020. Mobile TERMINAL FLOWER1 determines seed size in Arabidopsis. Nature Plants 6:1146−57 doi: 10.1038/s41477-020-0749-5 |
[122] |
Kang IH, Steffen JG, Portereiko MF, Lloyd A, Drews GN. 2008. The AGL62 MADS domain protein regulates cellularization during endosperm development in Arabidopsis. The Plant Cell 20:635−47 doi: 10.1105/tpc.107.055137 |
[123] |
Xu W, Fiume E, Coen O, Pechoux C, Lepiniec L, Magnani E. 2016. Endosperm and nucellus develop antagonistically in Arabidopsis seeds. The Plant Cell 28:1343−60 doi: 10.1105/tpc.16.00041 |
[124] |
Figueiredo DD, Batista RA, Roszak PJ, Hennig L, Köhler C. 2016. Auxin production in the endosperm drives seed coat development in Arabidopsis. eLife 5:e20542 doi: 10.7554/eLife.20542 |
[125] |
Pires ND, Bemer M, Müller LM, Baroux C, Spillane C, Grossniklaus U. 2016. Quantitative genetics identifies cryptic genetic variation involved in the paternal regulation of seed development. PLoS Genetics 12:e1005806 doi: 10.1371/journal.pgen.1005806 |
[126] |
Zhang H, Li X, Wang W, Li H, Cui Y, et al. 2022. SERKs regulate embryonic cuticle integrity through the TWS1-GSO1/2 signaling pathway in Arabidopsis. New Phytologist 233:313−28 doi: 10.1111/nph.17775 |
[127] |
Doll NM, Royek S, Fujita S, Okuda S, Chamot S, et al. 2020. A two-way molecular dialogue between embryo and endosperm is required for seed development. Science 367:431−35 doi: 10.1126/science.aaz4131 |
[128] |
Xing Q, Creff A, Waters A, Tanaka H, Goodrich J, et al. 2013. ZHOUPI controls embryonic cuticle formation via a signalling pathway involving the subtilisin protease ABNORMAL LEAF-SHAPE1 and the receptor kinases GASSHO1 and GASSHO2. Development 140:770−79 doi: 10.1242/dev.088898 |
[129] |
Yang S, Johnston N, Talideh E, Mitchell S, Jeffree C, et al. 2008. The endosperm-specific ZHOUPI gene of Arabidopsis thaliana regulates endosperm breakdown and embryonic epidermal development. Development 135:3501−9 doi: 10.1242/dev.026708 |
[130] |
Moussu S, Doll NM, Chamot S, Brocard L, Creff A, et al. 2017. ZHOUPI and KERBEROS mediate embryo/endosperm separation by promoting the formation of an extracuticular sheath at the embryo surface. The Plant Cell 29:1642−56 doi: 10.1105/tpc.17.00016 |
[131] |
Yuan J, Chen S, Jiao W, Wang L, Wang L, et al. 2017. Both maternally and paternally imprinted genes regulate seed development in rice. New Phytologist 216:373−87 doi: 10.1111/nph.14510 |
[132] |
Ma A, McDermaid A, Xu J, Chang Y, Ma Q. 2020. Integrative methods and practical challenges for single-cell multi-omics. Trends in Biotechnology 38:1007−22 doi: 10.1016/j.tibtech.2020.02.013 |