[1]

Plunkett BJ, Espley RV, Dare AP, Warren BAW, Grierson ERP, et al. 2018. MYBA from blueberry (Vaccinium section Cyanococcus) is a subgroup 6 type R2R3MYB transcription factor that activates anthocyanin production. Frontiers in Plant Science 9:1300

doi: 10.3389/fpls.2018.01300
[2]

Pérez-Pastor A, Ruiz-Sánchez MC, Conesa MR. 2016. Drought stress effect on woody tree yield. In Water Stress and Crop Plants: A Sustainable Approach, ed. Ahmad P. UK: John Wiley & Sons. pp. 356−74. https://doi.org/10.1002/9781119054450.ch22

[3]

Chen X, Qiu L, Guo H, Wang Y, Yuan H, et al. 2017. Spermidine induces physiological and biochemical changes in southern highbush blueberry under drought stress. Brazilian Journal of Botany 40:841−51

doi: 10.1007/s40415-017-0401-4
[4]

Drobek M, Frąc M, Cybulska J. 2019. Plant biostimulants: importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress—A review. Agronomy 9:335

doi: 10.3390/agronomy9060335
[5]

Wei T, Wang Y, Liu JH. 2020. Comparative transcriptome analysis reveals synergistic and disparate defense pathways in the leaves and roots of trifoliate orange (Poncirus trifoliata) autotetraploids with enhanced salt tolerance. Horticulture Research 7:88

doi: 10.1038/s41438-020-0311-7
[6]

Osakabe Y, Osakabe K, Shinozaki K, Tran LSP. 2014. Response of plants to water stress. Frontiers in Plant Science 5:86

doi: 10.3389/fpls.2014.00086
[7]

Gonçalves LP, Boscariol Camargo RL, Takita MA, Machado MA, Dos Soares Filho WS, et al. 2019. Rootstock-induced molecular responses associated with drought tolerance in sweet orange as revealed by RNA-Seq. BMC Genomics 20:110

doi: 10.1186/s12864-019-5481-z
[8]

Katiyar A, Smita S, Lenka SK, Rajwanshi R, Chinnusamy V, et al. 2012. Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis. BMC Genomics 13:544

doi: 10.1186/1471-2164-13-544
[9]

Yuan C, Li C, Lu X, Zhao X, Yan C, et al. 2020. Comprehensive genomic characterization of NAC transcription factor family and their response to salt and drought stress in peanut. BMC Plant Biology 20:454

doi: 10.1186/s12870-020-02678-9
[10]

Baldoni E, Genga A, Cominelli E. 2015. Plant MYB transcription factors: their role in drought response mechanisms. International Journal of Molecular Sciences 16:15811−51

doi: 10.3390/ijms160715811
[11]

Lee SB, Suh MC. 2015. Cuticular wax biosynthesis is up-regulated by the MYB94 transcription factor in Arabidopsis. Plant and Cell Physiology 56:48−60

doi: 10.1093/pcp/pcu142
[12]

Vaziriyeganeh M, Khan S, Zwiazek JJ. 2021. Transcriptome and metabolome analyses reveal potential salt tolerance mechanisms contributing to maintenance of water balance by the halophytic grass Puccinellia nuttalliana. Frontiers in Plant Science 12:760863

doi: 10.3389/fpls.2021.760863
[13]

Kim S, Kang JY, Cho DI, Park JH, Kim SY. 2004. ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. The Plant Journal 40:75−87

doi: 10.1111/j.1365-313X.2004.02192.x
[14]

Wu L, Ma L, Li L, Li Y. 2016. Studies on morphological and physiological response of eight blueberry cultivars underwater stress. Acta Horticulturae 1117:251−58

doi: 10.17660/actahortic.2016.1117.40
[15]

Yan Y, Castellarin SD. 2022. Blueberry water loss is related to both cuticular wax composition and stem scar size. Postharvest Biology and Technology 188:111907

doi: 10.1016/j.postharvbio.2022.111907
[16]

Xiao H, Tattersall EAR, Siddiqua MK, Cramer GR, Nassuth A. 2008. CBF4 is a unique member of the CBF transcription factor family of Vitis vinifera and Vitis riparia. Plant, Cell & Environment 31:1−10

doi: 10.1111/j.1365-3040.2007.01741.x
[17]

Haake V, Cook D, Riechmann J, Pineda O, Thomashow MF, et al. 2002. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiology 130:639−48

doi: 10.1104/pp.006478
[18]

Zhu J. 2016. Abiotic stress signaling and responses in plants. Cell 167:313−24

doi: 10.1016/j.cell.2016.08.029
[19]

Colle M, Leisner CP, Wai CM, Ou S, Bird KA, et al. 2019. Haplotype-phased genome and evolution of phytonutrient pathways of tetraploid blueberry. GigaScience 8:giz012

doi: 10.1093/gigascience/giz012
[20]

Yu J, Hulse-Kemp AM, Babiker E, Staton M. 2021. High-quality reference genome and annotation aids understanding of berry development for evergreen blueberry (Vaccinium darrowii). Horticulture Research 8:228

doi: 10.1038/s41438-021-00641-9
[21]

He H, Serraj R, Yang Q. 2009. Changes in OsXTH gene expression, ABA content, and peduncle elongation in rice subjected to drought at the reproductive stage. Acta Physiologiae Plantarum 31:749−56

doi: 10.1007/s11738-009-0287-2
[22]

Dupeux F, Antoni R, Betz K, Santiago J, Gonzalez-Guzman M, et al. 2011. Modulation of abscisic acid signaling in vivo by an engineered receptor-insensitive protein phosphatase type 2C allele. Plant Physiology 156:106−16

doi: 10.1104/pp.110.170894
[23]

Mei W, Qin Y, Song W, Li J, Zhu Y. 2009. Cotton GhPOX1 encoding plant class III peroxidase may be responsible for the high level of reactive oxygen species production that is related to cotton fiber elongation. Journal of Genetics and Genomics 36:141−50

doi: 10.1016/S1673-8527(08)60101-0
[24]

Amir Hossain M, Lee Y, Cho JI, Ahn CH, Lee SK, et al. 2010. The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice. Plant Molecular Biology 72:557−66

doi: 10.1007/s11103-009-9592-9
[25]

Pandey GK, Grant JJ, Cheong YH, Kim BG, Li L, et al. 2005. ABR1, an APETALA2-domain transcription factor that functions as a repressor of ABA response in Arabidopsis. Plant Physiology 139:1185−93

doi: 10.1104/pp.105.066324
[26]

Mengiste T, Chen X, Salmeron J, Dietrich R. 2003. The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. The Plant Cell 15:2551−65

doi: 10.1105/tpc.014167
[27]

To JPC, Haberer G, Ferreira FJ, Deruère J, Mason MG, et al. 2004. Type-A arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. The Plant Cell 16:658−71

doi: 10.1105/tpc.018978
[28]

Mason MG, Mathews DE, Argyros DA, Maxwell BB, Kieber JJ, et al. 2005. Multiple type-B response regulators mediate cytokinin signal transduction in Arabidopsis. The Plant cell 17:3007−18

doi: 10.1105/tpc.105.035451
[29]

Chen J, Song Y, Zhang H, Zhang D. 2013. Genome-wide analysis of gene expression in response to drought stress in Populus simonii. Plant Molecular Biology Reporter 31:946−62

doi: 10.1007/s11105-013-0563-6
[30]

Deng S, Ma J, Zhang L, Chen F, Sang Z, et al. 2019. De novo transcriptome sequencing and gene expression profiling of Magnolia wufengensis in response to cold stress. BMC Plant Biology 19:321

doi: 10.1186/s12870-019-1933-5
[31]

Liu F, Xie L, Yao Z, Zhou Y, Zhou W, et al. 2019. Caragana korshinskii phenylalanine ammonialyase is up-regulated in the phenylpropanoid biosynthesis pathway in response to drought stress. Biotechnology & Biotechnological Equipment 33:842−54

doi: 10.1080/13102818.2019.1623718
[32]

Shamala LF, Zhou HC, Han ZX, Wei S. 2020. UV-B induces distinct transcriptional re-programing in UVR8-signal transduction, flavonoid, and terpenoids pathways inCamellia sinensis. Frontiers in Plant Science 11:234

doi: 10.3389/fpls.2020.00234
[33]

Jung CS, Griffiths HM, de Jong DM, Cheng S, Bodis M, et al. 2005. The potato P locus codes for flavonoid 3′,5′-hydroxylase. Theoretical and Applied Genetics 110:269−75

doi: 10.1007/s00122-004-1829-z
[34]

Ishiguro K, Taniguchi M, Tanaka Y. 2012. Functional analysis of Antirrhinum kelloggii flavonoid 3'-hydroxylase and flavonoid 3',5'-hydroxylase genes; critical role in flower color and evolution in the genus Antirrhinum. Journal of Plant Research 125:451−56

doi: 10.1007/s10265-011-0455-5
[35]

Bhargava S, Sawant K, Tuberosa R. 2013. Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant Breeding 132:21−32

doi: 10.1111/pbr.12004
[36]

Krysan PJ, Jester PJ, Gottwald JR, Sussman MR. 2002. An Arabidopsis mitogen-activated protein kinase kinase kinase gene family encodes essential positive regulators of cytokinesis. The Plant Cell 14:1109−20

doi: 10.1105/tpc.001164
[37]

Agrawal GK, Rakwal R, Iwahashi H. 2002. Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAP kinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues. Biochemical and Biophysical Research Communications 294:1009−16

doi: 10.1016/S0006-291X(02)00571-5
[38]

Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, et al. 2009. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064−68

doi: 10.1126/science.1172408
[39]

Peleg Z, Blumwald E. 2011. Hormone balance and abiotic stress tolerance in crop plants. Current Opinion in Plant Biology 14:290−95

doi: 10.1016/j.pbi.2011.02.001
[40]

Cho SK, Kim JE, Park JA, Eom TJ, Kim WT. 2006. Constitutive expression of abiotic stress-inducible hot pepper CaXTH3, which encodes a xyloglucan endotransglucosylase/hydrolase homolog, improves drought and salt tolerance in transgenic Arabidopsis plants. FEBS Letters 580:3136−44

doi: 10.1016/j.febslet.2006.04.062
[41]

Choi JY, Seo YS, Kim SJ, Kim WT, Shin JS. 2011. Constitutive expression of CaXTH3, a hot pepper xyloglucan endotransglucosylase/hydrolase, enhanced tolerance to salt and drought stresses without phenotypic defects in tomato plants (Solanum lycopersicum cv. Dotaerang). Plant Cell Reports 30:867−77

doi: 10.1007/s00299-010-0989-3
[42]

Jaspers P, Kangasjärvi J. 2010. Reactive oxygen species in abiotic stress signaling. Physiologia Plantarum 138:405−13

doi: 10.1111/j.1399-3054.2009.01321.x
[43]

Kawano T. 2003. Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Reports 21:829−37

doi: 10.1007/s00299-003-0591-z
[44]

Shinozaki K, Yamaguchi-Shinozaki K. 2007. Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany 58:221−27

doi: 10.1093/jxb/erl164
[45]

Gong P, Zhang J, Li H, Yang C, Zhang C, et al. 2010. Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways in tomato. Journal of Experimental Botany 61:3563−75

doi: 10.1093/jxb/erq167
[46]

Degenkolbe T, Do PT, Zuther E, Repsilber D, Walther D, et al. 2009. Expression profiling of rice cultivars differing in their tolerance to long-term drought stress. Plant Molecular Biology 69:133−53

doi: 10.1007/s11103-008-9412-7
[47]

Yan DH, Fenning T, Tang S, Xia X, Yin W. 2012. Genome-wide transcriptional response of Populus euphratica to long-term drought stress. Plant Science 195:24−35

doi: 10.1016/j.plantsci.2012.06.005
[48]

Hong E, Lim CW, Han SW, Lee SC. 2017. Functional analysis of the pepper ethylene-responsive transcription factor, CaAIEF1, in enhanced ABA sensitivity and drought tolerance. Frontiers in Plant Science 8:1407

doi: 10.3389/fpls.2017.01407
[49]

Fujita Y, Yoshida T, Yamaguchi-Shinozaki K. 2013. Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiologia Plantarum 147:15−27

doi: 10.1111/j.1399-3054.2012.01635.x
[50]

Wei D, Li J, Zhang R, Ning S. 2002. Effects of ABA and ZT on some physiological characteristics of cell membrane in wheat leaf. Acta Botanica Boreali-occidentalia Sinica 22:1360−64

doi: 10.3321/j.issn:1000-4025.2002.06.013
[51]

Gu H, Wang Y, Xie H, Qiu C, Zhang S, et al. 2020. Drought stress triggers proteomic changes involving lignin, flavonoids and fatty acids in tea plants. Scientific Reports 10:15504

doi: 10.1038/s41598-020-72596-1
[52]

Khan MS, Ahmad D, Khan MA. 2015. Utilization of genes encoding osmoprotectants in transgenic plants for enhanced abiotic stress tolerance. Electronic Journal of Biotechnology 18:257−66

doi: 10.1016/j.ejbt.2015.04.002
[53]

Christie PJ, Alfenito MR, Walbot V. 1994. Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways: enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta 194:541−49

doi: 10.1007/BF00714468
[54]

Monika D, Sarika S, Sneha T, R. RA, Kishor G. 2018. Transcriptome analysis reveals interplay between hormones, ROS metabolism and cell wall biosynthesis for drought-induced root growth in wheat. Plant Physiology and Biochemistry 130:482−92

doi: 10.1016/j.plaphy.2018.07.035
[55]

Nakabayashi R, Yonekura-Sakakibara K, Urano K, Suzuki M, Yamada Y, et al. 2014. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant Journal 77:367−79

doi: 10.1111/tpj.12388
[56]

Bhardwaj AR, Joshi G, Kukreja B, Malik V, Arora P, et al. 2015. Global insights into high temperature and drought stress regulated genes by RNA-Seq in economically important oilseed crop Brassica juncea. BMC Plant Biology 15:9

doi: 10.1186/s12870-014-0405-1
[57]

Dixon RA, Paiva NL. 1995. Stress-induced phenylpropanoid metabolism. The Plant Cell 7:1085−97

doi: 10.2307/3870059
[58]

Nelson D, Werck-Reichhart D. 2011. A P450-centric view of plant evolution. The Plant Journal 66:194−211

doi: 10.1111/j.1365-313X.2011.04529.x
[59]

Pandian BA, Sathishraj R, Djanaguiraman M, Prasad PVV, Jugulam M. 2020. Role of cytochrome P450 enzymes in plant stress response. Antioxidants 9:454

doi: 10.3390/antiox9050454
[60]

Nakabayashi R, Mori T, Saito K. 2014. Alternation of flavonoid accumulation under drought stress in Arabidopsis thaliana. Plant Signaling & Behavior 9:e29518

doi: 10.4161/psb.29518
[61]

Liu S, Ju J, Xia G. 2014. Identification of the flavonoid 3'-hydroxylase and flavonoid 3',5'-hydroxylase genes from Antarctic moss and their regulation during abiotic stress. Gene 543:145−52

doi: 10.1016/j.gene.2014.03.026
[62]

Wang A, Liang K, Yang S, Cao Y, Wang L, et al. 2021. Genome-wide analysis of MYB transcription factors of Vaccinium corymbosum and their positive responses to drought stress. BMC Genomics 22:565

doi: 10.1186/s12864-021-07850-5
[63]

Liang K, Wang A, Sun Y, Yu M, Zhang L. 2019. Identification and expression of NAC transcription factors of Vaccinium corymbosum L. in response to drought stress. Forests 10:1088

doi: 10.3390/f10121088
[64]

Luo YZ, Liu H, Yan G, Li G, Turner NC. 2019. Roots of lucerne seedlings are more resilient to a water deficit than leaves or stems. Agronomy 9:123

doi: 10.3390/agronomy9030123
[65]

Xie C, Mao X, Huang J, Ding Y, Wu J, et al. 2011. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Research 39:W316−W322

doi: 10.1093/nar/gkr483
[66]

Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

doi: 10.1186/1471-2105-12-323
[67]

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550

doi: 10.1186/s13059-014-0550-8
[68]

Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

doi: 10.1186/1471-2105-9-559
[69]

Zhang B, Horvath S. 2005. A general framework for weighted gene co-expression network analysis. Statistical Applications in Genetics and Molecular Biology 4:1−45

doi: 10.2202/1544-6115.1128
[70]

Vashisth T, Johnson LK, Malladi A. 2011. An efficient RNA isolation procedure and identification of reference genes for normalization of gene expression in blueberry. Plant Cell Reports 30:2167−76

doi: 10.1007/s00299-011-1121-z