[1]

Zhang YP, Qu SP, Ma LL, Yang XM, Xu F, et al. 2017. Ultrastructural study of colonization of resistant Oriental lily clones by Fusarium oxysporum f. sp. lilii. Acta Horticulturae 1171:315−22

doi: 10.17660/actahortic.2017.1171.41
[2]

Zhang YP, Jiang S, Qu SP, Yang XM, Wang XN, et al. 2014. In vitro selection for Fusarium resistant Oriental lily mutants using culture filtrate of the fungal agent. Acta Horticulturae 1027:205−12

doi: 10.17660/actahortic.2014.1027.22
[3]

De Ascensao ARDCF, Dubery IA. 2000. Panama disease: Cell wall reinforcement in banana roots in response to elicitors from Fusarium oxysporum f. sp. cubense race four. Phytopathology 90:1173−80

doi: 10.1094/PHYTO.2000.90.10.1173
[4]

Sebastiani MS, Bagnaresi P, Sestili S, Biselli C, Zechini A, et al. 2017. Transcriptome analysis of the melon-Fusarium oxysporum f. sp. melonis race 1.2 pathosystem in susceptible and resistant plants. Frontiers in Plant Science 8:362

doi: 10.3389/fpls.2017.00362
[5]

Choi SM, Song HR, Han SK, Han M, Kim CY, et al. 2012. HDA19 is required for the repression of salicylic acid biosynthesis and salicylic acid-mediated defense responses in Arabidopsis. The Plant Journal 71:135−46

doi: 10.1111/j.1365-313X.2012.04977.x
[6]

Chen L, Wu Q, He W, He T, Wu Q, et al. 2019. Combined De Novo Transcriptome and Metabolome Analysis of Common Bean Response to Fusarium oxysporum f. sp. phaseoli Infection. International Journal Molecular Sciences 20:6278

doi: 10.3390/ijms20246278
[7]

Nawaz MA, Rehman HM, Imtiaz M, Baloch FS, Lee JD, et al. 2017. Systems identification and characterization of cell wall reassembly and degradation related genes in Glycine max (L.) Merill, a bioenergy legume. Scientific Reports 7:10862

doi: 10.1038/s41598-017-11495-4
[8]

Chu N, Zhou JR, Fu HY, Huang MT, Zhang HL, et al. 2019. Global gene responses of resistant and susceptible sugarcane cultivars to Acidovorax avenae subsp. avenae identified using comparative transcriptome analysis. Microorganisms 8:10

doi: 10.3390/microorganisms8010010
[9]

Bigeard J, Colcombet J, Hirt H. 2015. Signaling mechanisms in pattern-triggered immunity (PTI). Molecular Plant 8:521−39

doi: 10.1016/j.molp.2014.12.022
[10]

Demirci YE, Inan C, Günel A, Maytalman D, Mert Z, et al. 2016. Proteome profiling of the compatible interaction between wheat and stripe rust. European Journal of Plant Pathology 145:941−62

doi: 10.1007/s10658-016-0882-1
[11]

Guo S, Zuo Y, Zhang Y, Wu C, Su W, et al. 2017. Large-scale transcriptome comparison of sunflower genes responsive to Verticillium dahliae. BMC Genomics 18:42

doi: 10.1186/s12864-016-3386-7
[12]

Gupta S, Chakraborti D, Rangi RK, Basu D, Das S. 2009. A molecular insight into the early events of Chickpea (Cicer arietinum) and Fusarium oxysporum f. sp. ciceri (Race 1) interaction through cDNA-AFLP analysis. Phytopathology 99:1245−57

doi: 10.1094/PHYTO-99-11-1245
[13]

Rolland F, Moore B, Sheen J. 2002. Sugar sensing and signaling in plants. The Plant Cell 14:S185−S205

doi: 10.1105/tpc.010455
[14]

Rao J, Liu D, Zhang N, He H, Ge F, et al. 2014. Differential gene expression in incompatible interaction between Lilium regale Wilson and Fusarium oxysporum f. sp. lilii revealed by combined SSH and microarray analysis. Molecular Biology 48:915−26

doi: 10.7868/s0026898414060147
[15]

Zhang N, Liu D, Zheng W, He H, Ji B, et al. 2014. A bZIP transcription factor, LrbZIP1, is involved in Lilium regale Wilson defense responses against Fusarium oxysporum f. sp. lilii. Genes & Genomics 36:789−98

doi: 10.1007/s13258-014-0214-9
[16]

Lim JH, Choi ST, Rhee HK, Cho HR, Joung HY. 2005. Level of resistance to Fusarium oxysporum f. sp. lilii (Fol 4 and 11) using endogenous antifungal substances extracted from bulbs and/or roots in Lilium genus. Acta Horticulturae 673:645−52

doi: 10.17660/actahortic.2005.673.89
[17]

Strauß T, Van Poecke RM, Strauß A, Römer P, Minsavage GV, et al. 2012. RNA-seq pinpoints a Xanthomonas TAL-effector activated resistance gene in a large-crop genome. PNAS 109:19480−85

doi: 10.1073/pnas.1212415109
[18]

Wu J, Zhang Y, Zhang H, Huang H, Folta KM, et al. 2010. Whole genome wide expression profiles of Vitis amurensis grape responding to downy mildew by using Solexa sequencing technology. BMC Plant Biology 10:234

doi: 10.1186/1471-2229-10-234
[19]

Ward JA, Weber CA. 2011. Comparative RNA-seq for the investigation of resistance to Phytophthora root rot in the red raspberry 'Latham'. Acta Horticulturae 946:67−72

doi: 10.17660/actahortic.2012.946.7
[20]

Blackstock WP, Wei RMP. 1999. Proteomics: Quantitative and physical mapping of cellular proteins. Trends Bin Biotechnology 17:121−27

doi: 10.1016/S0167-7799(98)01245-1
[21]

Du F, Wu Y, Zhang L, Li XW, Zhao XY, et al. 2015. De novo assembled transcriptome analysis and SSR marker development of a mixture of six tissues from Lilium oriental hybrid ‘Sorbonne’. Plant Molecular Biology Reporter 33:281−93

doi: 10.1007/s11105-014-0746-9
[22]

Hao Y, Wang T, Wang K, Wang X, Fu Y, et al. 2016. Transcriptome Analysis Provides Insights into the Mechanisms Underlying Wheat Plant Resistance to Stripe Rust at the Adult Plant Stage. PLoS ONE 11:e0150717

doi: 10.1371/journal.pone.0150717
[23]

Zhu Q, Song Y, Zhang G, Ju L, Zhang J, et al. 2015. De Novo Assembly and Transcriptome Analysis of Wheat with Male Sterility Induced by the Chemical Hybridizing Agent SQ-1. PLoS ONE 10:e0123556

doi: 10.1371/journal.pone.0123556
[24]

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29:644−52

doi: 10.1038/nbt.1883
[25]

Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

doi: 10.1186/1471-2105-12-323
[26]

Sablok G, Fu Y, Bobbio V, Laura M, Rotino GL, et al. 2014. Fuelling genetic and metabolic exploration of C3 bioenergy crops through the first reference transcriptome of Arundo donax L. Plant Biotechnology Journal 12:554−67

doi: 10.1111/pbi.12159
[27]

The UniProt Consortium. 2004. UniProt: the universal protein knowledgebase. Nucleic Acids Research 32:D158−D169

doi: 10.1093/nar/gkw1099
[28]

Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, et al. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674−76

doi: 10.1093/bioinformatics/bti610
[29]

Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. 2004. The KEGG resource for deciphering the genome. Nucleic Acids Research 32:D277−D280

doi: 10.1093/nar/gkh063
[30]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−8

doi: 10.1006/meth.2001.1262
[31]

Tatusov RL, Galperin MY, Natale DA, Koonin EV. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Research 28:33−36

doi: 10.1093/nar/28.1.33
[32]

Ren XL, Li LQ, Xu L, Guo YS, Lu LM. 2016. Identification of low potassium stress-responsive proteins in tobacco (Nicotiana tabacum) seedling roots using an iTRAQ-based analysis. Genetics and Molecular Research 15:gmr.15038573

doi: 10.4238/gmr.15038573
[33]

Zhang F, Wang Z, Dong W, Sun C, Wang H, et al. 2014. Transcriptomic and proteomic analysis reveals mechanisms of embryo abortion during chrysanthemum cross breeding. Scientific Reports 4:6536

doi: 10.1038/srep06536
[34]

Zhang F, Hua L, Fei J, Wang F, Liao Y, et al. 2016. Chromosome doubling to overcome the chrysanthemum cross barrier based on insight from transcriptomic and proteomic analyses. BMC Genomics 17:585

doi: 10.1186/s12864-016-2939-0
[35]

Bolton MD, Kolmer JA, Xu WW, Garvin DF. 2008. Lr34-mediated leaf rust resistance in wheat: transcript profiling reveals a high energetic demand supported by transient recruitment of multiple metabolic pathways. Molecular Plant - Microbe Interactions 21:1515−27

doi: 10.1094/MPMI-21-12-1515
[36]

Coram TE, Settles ML, Chen X. 2008. Transcriptome analysis of high-temperature adult-plant resistance conditioned by Yr39 during the wheat - Puccinia striiformis f. sp. tritici interaction. Molecular Plant Pathology 9:479−93

doi: 10.1111/j.1364-3703.2008.00476.x
[37]

Bozkurt TO, Mcgrann GR., MacCormack R, Boyd LA, Akkaya MS. 2010. Cellular and transcriptional responses of wheat during compatible and incompatible race-specific interactions with Puccinia striiformis f. sp. tritici. Molecular Plant Pathology 11:625−40

doi: 10.1111/j.1364-3703.2010.00633.x
[38]

Kankanala P, Nandety RS, Mysore KS. 2019. Genomics of Plant Disease Resistance in Legumes. Frontiers in Plant Science 10:1345

doi: 10.3389/fpls.2019.01345
[39]

Que Y, Su Y, Guo J, Wu Q, Xu L. 2014. A global view of transcriptome dynamics during Sporisorium scitamineum challenge in sugarcane by RNA-seq. PLoS ONE 10:e106476

doi: 10.1371/journal.pone.0106476
[40]

Bari R, Jones JDG. 2009. Role of plant hormones in plant defence responses. Plant Molecular Biology 69:473−88

doi: 10.1007/s11103-008-9435-0
[41]

Gao X, Cui Q, Cao QZ, Liu Q, He HB, et al. 2017. Transcriptome-wide analysis of Botrytis elliptica responsive microRNAs and their targets in Lilium regale Wilson by high-throughput sequencing and degradome analysis. Frontiers in Plant Science 8:753

doi: 10.3389/fpls.2017.00753
[42]

Duan Y, Jiang Y, Ye S, Karim A, Ling Z, et al. 2015. PtrWRKY73, a salicylic acid-inducible poplar WRKY transcription factor, is involved in disease resistance in Arabidopsis thaliana. Plant Cell Reports 34:831−41

doi: 10.1007/s00299-015-1745-5
[43]

Fu P, Piao Y, Zhan Z, Zhao Y, Pang W, et al. 2019. Transcriptome profile of Brassica rapa L. reveals the involvement of jasmonic acid, ethylene, and brassinosteroid signaling pathways in clubroot resistance. Agronomy 9:589

doi: 10.3390/agronomy9100589
[44]

Ho CL, Tan YC, Yeoh KA, Ghazali AK, Yee WY, et al. 2016. De novo transcriptome analyses of host-fungal interactions in oil palm (Elaeis guineensis Jacq. ). BMC Genomics 17:66

doi: 10.1186/s12864-016-2368-0
[45]

Klessig DF, Durner J, Shah J, Yang Y. 1998. Salicylic acid-mediated signal transduction in plant disease resistance. In Phytochemical Signals and Plant-microbe Interactions, eds. Romeo JT, Downum KR, Verpoorte R. Vol. 32. Boston, MA, USA: Springer. pp. 119–37. https://doi.org/10.1007/978-1-4615-5329-8_7

[46]

Cui Q, Liu Q, Gao X, Yan X, Jia G. 2018. Transcriptome-based identification of genes related to resistance against Botrytis elliptica in Lilium regale. Canadian Journal of Plant Science 98:1058−71

doi: 10.1139/cjps-2017-0254
[47]

Choi HW, Lee BG, Kim NH, Park Y, Lim CW, et al. 2008. A role for a menthone reductase in resistance against microbial pathogens in plants. Plant Physiology 148:383−401

doi: 10.1104/pp.108.119461
[48]

Mittler R, Herr EH, Orvar BL, van Camp W, Willekens H, et al. 1999. Transgenic tobacco plants with reduced capability to detoxify reactive oxygen intermediates are hyperresponsive to pathogen infection. PNAS 96:14165−70

doi: 10.1073/pnas.96.24.14165
[49]

Zhang L, Cenci A, Rouard M, Zhang D, Wang Y, et al. 2019. Transcriptomic analysis of resistant and susceptible banana corms in response to infection by Fusarium oxysporum f. sp. cubense tropical race 4. Scientific Reports 9:8199

doi: 10.1038/s41598-019-44637-x
[50]

Zheng Y, Yang Y, Liu C, Chen L, Sheng J, et al. 2015. Inhibition of SlMPK1, SlMPK2, and SlMPK3 disrupts defense signaling pathways and enhances tomato fruit susceptibility to Botrytis cinerea. Journal Agriculture Food Chemistry 63:5509−17

doi: 10.1021/acs.jafc.5b00437
[51]

Solecka D. 1997. Role of phenylpropanoid compounds in plant responses to different stress factors. Acta Physiologiae Plantarum 19(3):257−268

doi: 10.1007/s11738-997-0001-1
[52]

Naoumkina MA, Zhao Q, Gallego-Giraldo L, Dai X, Zhao PX, et al. 2010. Genome-wide analysis of phenylpropanoid defence pathways. Molecular Plant Pathology 11:829−46

doi: 10.1111/j.1364-3703.2010.00648.x
[53]

Cantu D, Vicente AR, Labavitch JM, Bennett AB, Powell ALT. 2008. Strangers in the matrix: plant cell walls and pathogen susceptibility. Trends in Plant Science 13:610−17

doi: 10.1016/j.tplants.2008.09.002
[54]

Keegstra K. 2010. Plant cell walls. Plant Physiology 154:483−86

doi: 10.1104/pp.110.161240
[55]

Fuchs H, Sacristan MD. 1996. Identification of a gene in Arabidopsis thaliana controlling resistance to clubroot (Plasmodiophora brassicae) and characterization of the resistance response. MPMI-Molecular Plant Microbe Interactions 9:91−97

doi: 10.1094/MPMI-9-0091