[1] |
Hennig L. 2012. Plant gene regulation in response to abiotic stress. Biochimica et Biophysica Acta 1819:85 doi: 10.1016/j.bbagrm.2012.01.005 |
[2] |
Jiang J, Ma S, Ye N, Jiang M, Cao J, et al. 2017. WRKY transcription factors in plant responses to stresses. Journal of Integrative Plant Biology 59:86−101 doi: 10.1111/jipb.12513 |
[3] |
Ulker B, Somssich IE. 2004. lker B, Somssich IE. WRKY transcription factors: from DNA binding towards biological function. Current Opinion in Plant Biology 7:491−98 doi: 10.1016/j.pbi.2004.07.012 |
[4] |
Ross CA, Liu Y, Shen QJ. 2007. The WRKY gene family in rice (Oryza sativa). Journal of Integrative Plant Biology 49:827−42 doi: 10.1111/j.1744-7909.2007.00504.x |
[5] |
Cheng X, Zhao Y, Jiang Q, Yang J, Zhao W, et al. 2019. Structural basis of dimerization and dual W-box DNA recognition by rice WRKY domain. Nucleic Acids Research 47:4308−18 doi: 10.1093/nar/gkz113 |
[6] |
Zhang Y, Wang L. 2005. The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. Bmc Evolutionary Biology 5:1 doi: 10.1186/1471-2148-5-1 |
[7] |
Satapathy L, Singh D, Ranjan P, Kumar D, Kumar M, et al. 2014. Transcriptome-wide analysis of WRKY transcription factors in wheat and their leaf rust responsive expression profiling. Molecular Genetics & Genomics 289:1289−306 doi: 10.1007/s00438-014-0890-9 |
[8] |
Bakshi M, Oelmüller R. 2014. WRKY transcription factors: Jack of many trades in plants. Plant Signaling & Behavior 9:e27700 doi: 10.4161/psb.27700 |
[9] |
Zhou Q, Tian A, Zou H, Xie Z, Lei G, et al. 2008. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnology Journal 6:486−503 doi: 10.1111/j.1467-7652.2008.00336.x |
[10] |
Seo YJ, Park JB, Cho YJ, Jung C, Seo HS, et al. 2010. Overexpression of the ethylene-responsive factor gene BrERF4 from Brassica rapa increases tolerance to salt and drought in Arabidopsis plants. Molecules and Cells 30:271−77 doi: 10.1007/s10059-010-0114-z |
[11] |
Kim KC, Lai Z, Fan B, Chen Z. 2008. Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. The Plant Cell 20:2357−71 doi: 10.1105/tpc.107.055566 |
[12] |
Peng Y, Bartley LE, Chen X, Dardick C, Chern M, et al. 2008. OsWRKY62 is a negative regulator of basal and Xa21-mediated defense against Xanthomonas oryzae pv. oryzae in rice. Molecular Plant 1:446−58 doi: 10.1093/mp/ssn024 |
[13] |
Chen L, Zhang L, Yu D. 2010. Wounding-induced WRKY8 is involved in basal defense in Arabidopsis. Molecular Plant-Microbe Interactions 23:558−65 doi: 10.1094/mpmi-23-5-0558 |
[14] |
Dang F, Wang Y, She J, Lei Y, Liu Z, et al. 2014. Overexpression of CaWRKY27, a subgroup IIe WRKY transcription factor of Capsicum annuum, positively regulates tobacco resistance to Ralstonia solanacearum infection. Physiologia Plantarum 150:397−411 doi: 10.1111/ppl.12093 |
[15] |
Cai H, Yang S, Yan Y, Xiao Z, Cheng J, et al. 2015. CaWRKY6 transcriptionally activates CaWRKY40, regulates Ralstonia solanacearum resistance, and confers high-temperature and high-humidity tolerance in pepper. Journal of Experimental Botany 66:3163−74 doi: 10.1093/jxb/erv125 |
[16] |
Li JB, Luan YS, Liu Z. 2015. Overexpression of SpWRKY1 promotes resistance to Phytophthora nicotianae and tolerance to salt and drought stress in transgenic tobacco. Physiologia Plantarum 155:248−66 doi: 10.1111/ppl.12315 |
[17] |
Ifnan Khan M, Zhang Y, Liu Z, Hu J, Liu C, et al. 2018. CaWRKY40b in Pepper Acts as a negative regulator in response to Ralstonia solanacearum by directly modulating defense genes including CaWRKY40. International Journal of Molecular Sciences 19:1403 doi: 10.3390/ijms19051403 |
[18] |
Rasmussen MW, Roux M, Petersen M, Mundy J. 2012. MAP Kinase Cascades in Arabidopsis Innate Immunity. Frontiers in Plant Science 3:169 doi: 10.3389/fpls.2012.00169 |
[19] |
Zheng Z, Qamar SA, Chen Z, Mengiste T. 2006. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. The Plant Journal 48:592−605 doi: 10.1111/j.1365-313X.2006.02901.x |
[20] |
Xing DH, Lai ZB, Zheng ZY, Vinod KM, Fan BF, et al. 2008. Stress- and pathogen-induced Arabidopsis WRKY48 is a transcriptional activator that represses plant basal defense. Molecular Plant 1:459−70 doi: 10.1093/mp/ssn020 |
[21] |
Wang N, Xia EH, Gao LZ. 2016. Genome-wide analysis of WRKY family of transcription factors in common bean, Phaseolus vulgaris: chromosomal localization, structure, evolution and expression divergence. Plant Gene 5:22−30 doi: 10.1016/j.plgene.2015.11.003 |
[22] |
Vo KTX, Kim CY, Hoang TV, Lee SK, Shirsekar G, et al. 2017. OsWRKY67 plays a positive role in basal and XA21-mediated resistance in rice. Frontiers in Plant Science 8:2220 doi: 10.3389/fpls.2017.02220 |
[23] |
Yang Y, Zhou Y, Chi Y, Fan B, Chen Z. 2017. Characterization of soybean WRKY gene family and identification of soybean WRKY genes that promote resistance to soybean Cyst nematode. Scientific Reports 7:17804 doi: 10.1038/s41598-017-18235-8 |
[24] |
Dang FF, Wang YN, Yu L, Eulgem T, Lai Y, et al. 2013. CaWRKY40, a WRKY protein of pepper, plays an important role in the regulation of tolerance to heat stress and resistance to Ralstonia solanacearum infection. Plant, Cell & Environment 36:757−74 doi: 10.1111/pce.12011 |
[25] |
Li S, Fu Q, Chen L, Huang W, Yu D. 2011. Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta 233:1237−52 doi: 10.1007/s00425-011-1375-2 |
[26] |
Ren S, Ma K, Lu Z, Chen G, Cui J, et al. 2019. Transcriptomic and metabolomic analysis of the heat-stress response of Populus tomentosa Carr. Forests 10:383 doi: 10.3390/f10050383 |
[27] |
Park CY, Lee JH, Yoo JH, Moon BC, Choi MS, et al. 2005. WRKY group IId transcription factors interact with calmodulin. FEBS Letters 579:1545−50 doi: 10.1016/j.febslet.2005.01.057 |
[28] |
Wang L, Ma KB, Lu ZG, Ren SX, Jiang HR, et al. 2020. Differential physiological, transcriptomic and metabolomic responses of Arabidopsis leaves under prolonged warming and heat shock. BMC Plant Biology 20:86 doi: 10.1186/s12870-020-2292-y |
[29] |
Wang M, Vannozzi A, Wang G, Liang YH, Tornielli GB, et al. 2014. Genome and transcriptome analysis of the grapevine (Vitis vinifera L.) WRKY gene family. Horticulture Research 1:14016 doi: 10.1038/hortres.2014.16 |
[30] |
Guo M, Yang F, Liu C, Zou J, Qi Z, et al. 2022. A single-nucleotide polymorphism in WRKY33 promoter is associated with the cold sensitivity in cultivated tomato. New Phytologist 236:989−1005 doi: 10.1111/nph.18403 |
[31] |
Zou C, Jiang W, Yu D. 2010. Male gametophyte-specific WRKY34 transcription factor mediates cold sensitivity of mature pollen in Arabidopsis. Journal of Experimental Botany 61:3901−14 doi: 10.1093/jxb/erq204 |
[32] |
Wang M, Huang Q, Lin P, Zeng Q, Li Y, et al. 2019. The Overexpression of a transcription factor gene VbWRKY32 enhances the cold tolerance in Verbena bonariensis. Frontiers in Plant Science 10:1746 doi: 10.3389/fpls.2019.01746 |
[33] |
Shi W, Hao L, Li J, Liu D, Guo X, et al. 2014. The Gossypium hirsutum WRKY gene GhWRKY39-1 promotes pathogen infection defense responses and mediates salt stress tolerance in transgenic Nicotiana benthamiana. Plant Cell Reports 33:483−98 doi: 10.1007/s00299-013-1548-5 |
[34] |
Yan H, Jia H, Chen X, Hao L, An H, et al. 2014. The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production. Plant and Cell Physiology 55:2060−76 doi: 10.1093/pcp/pcu133 |
[35] |
Luo X, Li C, He X, Zhang X, Zhu L. 2020. ABA signaling is negatively regulated by GbWRKY1 through JAZ1 and ABI1 to affect salt and drought tolerance. Plant Cell Reports 39:181−94 doi: 10.1007/s00299-019-02480-4 |
[36] |
Zhu JK. 2002. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology 53:247−73 doi: 10.1146/annurev.arplant.53.091401.143329 |
[37] |
Jiang Y, Bao L, Jeong SY, Kim SK, Xu C, et al. 2012. XIAO is involved in the control of organ size by contributing to the regulation of signaling and homeostasis of brassinosteroids and cell cycling in rice. The Plant Journal 70:398−408 doi: 10.1111/j.1365-313X.2011.04877.x |
[38] |
Liu Y, Yang T, Lin Z, Guo B, Xing C, et al. 2019. A WRKY transcription factor PbrWRKY53 from Pyrus betulaefolia is involved in drought tolerance and AsA accumulation. Plant Biotechnology Journal 17:1770−87 doi: 10.1111/pbi.13099 |
[39] |
Wei W, Cui MY, Yang H, Gao K, Xie YG, et al. 2018. Ectopic expression of FvWRKY42 , a WRKY transcription factor from the diploid woodland strawberry (Fragaria vesca), enhances resistance to powdery mildew, improves osmotic stress resistance, and increases abscisic acid sensitivity in Arabidopsis. Plant Science 275:60−74 doi: 10.1016/j.plantsci.2018.07.010 |
[40] |
Gong X, Zhang J, Hu J, Wang W, Wu H, et al. 2015. FcWRKY 70, a WRKY protein of Fortunella crassifolia, functions in drought tolerance and modulates putrescine synthesis by regulating arginine decarboxylase gene. Plant, Cell & Environment 38:2248−62 doi: 10.1111/pce.12539 |
[41] |
Cai Y, Chen X, Xie K, Xing Q, Wu Y, et al. 2014. Dlf1, a WRKY transcription factor, is involved in the control of flowering time and plant height in rice. PloS One 9:e102529 doi: 10.1371/journal.pone.0102529 |
[42] |
Chen F, Hu Y, Vannozzi A, Wu K, Cai H, et al. 2017. The WRKY transcription factor family in model plants and crops. Critical Reviews in Plant Sciences 36:311−35 doi: 10.1080/07352689.2018.1441103 |
[43] |
Ishiguro S, Nakamura K. 1994. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5' upstream regions of genes coding for sporamin and β-amylase from sweet potato. Molecular and General Genetics 244:563−71 doi: 10.1007/BF00282746 |
[44] |
Li W, Wang H, Yu D. 2016. Arabidopsis WRKY Transcription Factors WRKY12 and WRKY13 Oppositely Regulate Flowering under Short-Day Conditions. Molecular Plant 9:1492−503 doi: 10.1016/j.molp.2016.08.003 |
[45] |
Rushton PJ, Macdonald H, Huttly AK, Lazarus CM, Hooley R. 1995. Members of a new family of DNA-binding proteins bind to a conserved cis-element in the promoters of α-Amy2 genes. Plant Molecular Biology 29:691−702 doi: 10.1007/BF00041160 |
[46] |
Miao Y, Zentgraf U. 2010. A HECT E3 ubiquitin ligase negatively regulates Arabidopsis leaf senescence through degradation of the transcription factor WRKY53. The Plant Journal 63:179−88 doi: 10.1111/j.1365-313x.2010.04233.x |
[47] |
Yu Y, Liu Z, Wang L, Kim SG, Seo PJ, et al. 2016. WRKY71 accelerates flowering via the direct activation of FLOWERING LOCUS T and LEAFY in Arabidopsis thaliana. The Plant Journal 85:96−106 doi: 10.1111/tpj.13092 |
[48] |
Zhang GQ, Xu Q, Bian C, Tsai WC, Yeh CM, et al. 2016. The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution. Scientific Reports 6:19029 doi: 10.1038/srep19029 |
[49] |
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30:772−80 doi: 10.1093/molbev/mst010 |
[50] |
Eddy SR. 2011. Accelerated Profile HMM Searches. PLoS Computational Biology 7:e1002195 doi: 10.1371/journal.pcbi.1002195 |
[51] |
Letunic I, Doerks T, Bork P. 2012. SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Research 40:D302−D305 doi: 10.1093/nar/gkr931 |
[52] |
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, et al. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59:307−21 doi: 10.1093/sysbio/syq010 |
[53] |
Wang X, Yam TW, Meng Q, Zhu J, Zhang P, et al. 2016. The dual inoculation of endophytic fungi and bacteria promotes seedlings growth in Dendrobium catenatum (Orchidaceae) under in vitro culture conditions. Plant Cell, Tissue and Organ Culture (PCTOC) 126:523−31 doi: 10.1007/s11240-016-1021-6 |
[54] |
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Molecular Plant 13:1194−202 doi: 10.1016/j.molp.2020.06.009 |
[55] |
Wang T, Song Z, Wei L, Li L. 2018. Molecular characterization and expression analysis of WRKY family genes in Dendrobium officinale. Genes & Genomics 40:265−79 doi: 10.1007/s13258-017-0602-z |
[56] |
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. 2017. Salmon provides fast and bias-aware quantification of transcript expression. Nature Methods 14:417−19 doi: 10.1038/nmeth.4197 |
[57] |
Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K. 2009. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Reports 28:21−30 doi: 10.1007/s00299-008-0614-x |
[58] |
Wang N, Xu S, Sun Y, Liu D, Zhou L, et al. 2019. The cotton WRKY transcription factor (GhWRKY33) reduces transgenic Arabidopsis resistance to drought stress. Scientific Reports 9:724 doi: 10.1038/s41598-018-37035-2 |
[59] |
Wei W, Liang DW, Bian XH, Shen M, Xiao JH, et al. 2019. GmWRKY54 improves drought tolerance through activating genes in abscisic acid and Ca2+ signaling pathways in transgenic soybean. The Plant Journal 100:384−98 doi: 10.1111/tpj.14449 |
[60] |
Ren X, Chen Z, Liu Y, Zhang H, Zhang M, et al. 2010. ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. The Plant Journal 63:417−29 doi: 10.1111/j.1365-313x.2010.04248.x |
[61] |
Niu CF, Wei W, Zhou QY, Tian AG, Hao YJ, et al. 2012. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant, Cell & Environment 35:1156−70 doi: 10.1111/j.1365-3040.2012.02480.x |
[62] |
Qiu Y, Yu D. 2009. Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environmental and Experimental Botany 65:35−47 doi: 10.1016/j.envexpbot.2008.07.002 |
[63] |
Lu K, Liang S, Wu Z, Bi C, Yu YT, et al. 2016. Overexpression of an Arabidopsis cysteine-rich receptor-like protein kinase, CRK5, enhances abscisic acid sensitivity and confers drought tolerance. Journal of Experimental Botany 67:5009−27 doi: 10.1093/jxb/erw266 |
[64] |
Lahiri A, Venkatasubramani PS, Datta A. 2019. Bayesian modeling of plant drought resistance pathway. BMC Plant Biology 19:1−11 doi: 10.1186/s12870-019-1684-3 |
[65] |
Qiao Z, Li CL, Zhang W. 2016. WRKY1 regulates stomatal movement in drought-stressed Arabidopsis thaliana. Plant Molecular Biology 91:53−65 doi: 10.1007/s11103-016-0441-3 |
[66] |
Shen H, Liu C, Zhang Y, Meng X, Zhou X, et al. 2012. OsWRKY30 is activated by MAP kinases to confer drought tolerance in rice. Plant Molecular Biology 80:241−53 doi: 10.1007/s11103-012-9941-y |
[67] |
Ricachenevsky FK, Sperotto RA, Menguer PK, Fett JP. 2010. Identification of Fe-excess-induced genes in rice shoots reveals a WRKY transcription factor responsive to Fe, drought and senescence. Molecular Biology Reports 37:3735−45 doi: 10.1007/s11033-010-0027-0 |
[68] |
Raineri J, Wang S, Peleg Z, Blumwald E, Chan RL. 2015. The rice transcription factor OsWRKY47 is a positive regulator of the response to water deficit stress. Plant Molecular Biology 88:401−13 doi: 10.1007/s11103-015-0329-7 |
[69] |
Wang C, Ru J, Liu Y, Li M, Zhao D, et al. 2018. Maize WRKY transcription factor ZmWRKY106 confers drought and heat tolerance in transgenic plants. International Journal of Molecular Sciences 19:3046 doi: 10.3390/ijms19103046 |
[70] |
Jaffar MA, Song A, Faheem M, Chen S, Jiang J, et al. 2016. Involvement of CmWRKY10 in drought tolerance of chrysanthemum through the ABA-signaling pathway. International Journal of Molecular Sciences 17:693 doi: 10.3390/ijms17050693 |
[71] |
He GH, Xu JY, Wang YX, Liu JM, Li PS, et al. 2016. Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC plant Biology 16:693 doi: 10.1186/s12870-016-0806-4 |
[72] |
Zheng L, Liu G, Meng X, Liu Y, Ji X, et al. 2013. A WRKY gene from Tamarix hispida, ThWRKY4, mediates abiotic stress responses by modulating reactive oxygen species and expression of stress-responsive genes. Plant Molecular Biology 82:303−20 doi: 10.1007/s11103-013-0063-y |
[73] |
Kiranmai K, Lokanadha Rao G, Pandurangaiah M, Nareshkumar A, Amaranatha Reddy V, et al. 2018. A novel WRKY transcription factor, MuWRKY3 (Macrotyloma uniflorum Lam. Verdc.) enhances drought stress tolerance in transgenic groundnut (Arachis hypogaea L.) plants. Frontiers in Plant Science 9:346 doi: 10.3389/fpls.2018.00346 |
[74] |
Chu X, Wang C, Chen X, Lu W, Li H, et al. 2015. The cotton WRKY gene GhWRKY41 positively regulates salt and drought stress tolerance in transgenic Nicotiana benthamiana. PLoS One 10:e0143022 doi: 10.1371/journal.pone.0143022 |
[75] |
Wang X, Zeng J, Li Y, Rong X, Sun J, et al. 2015. Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances. Frontiers in Plant Science 6:615 doi: 10.3389/fpls.2015.00615 |
[76] |
Shi WY, Du YT, Ma J, Min DH, Jin LG, et al. 2018. The WRKY transcription factor GmWRKY12 confers drought and salt tolerance in soybean. International Journal of Molecular Sciences 19:4087 doi: 10.3390/ijms19124087 |
[77] |
Gulzar F, Fu J, Zhu C, Yan J, Li X, et al. 2021. Maize WRKY transcription factor ZmWRKY79 positively regulates drought tolerance through elevating ABA biosynthesis. International Journal of Molecular Sciences 22:10080 doi: 10.3390/ijms221810080 |
[78] |
Wang J, Wang L, Yan Y, Zhang S, Li H, et al. 2021. GhWRKY21 regulates ABA-mediated drought tolerance by fine-tuning the expression of GhHAB in cotton. Plant Cell Reports 40:2135−50 doi: 10.1007/s00299-020-02590-4 |
[79] |
Ahammed GJ, Li X, Mao Q, Wan H, Zhou G, et al. 2021. The SlWRKY81 transcription factor inhibits stomatal closure by attenuating nitric oxide accumulation in the guard cells of tomato under drought. Physiologia Plantarum 172:885−95 doi: 10.1111/ppl.13243 |
[80] |
Lei R, Li X, Ma Z, Lv Y, Hu Y, et al. 2017. Arabidopsis WRKY2 and WRKY34 transcription factors interact with VQ20 protein to modulate pollen development and function. The Plant Journal 91:962−76 doi: 10.1111/tpj.13619 |
[81] |
Ha D, Zhang LA, Shen J. 2011. The Role of a transcription factor in regulating rice response to drought stress. Undergraduate Research Opportunities Program (UROP) 5:18 |
[82] |
Zhang W, Zhao S, Gu S, Cao X, Zhang Y, et al. 2022. FvWRKY48 binds to the pectate lyase FvPLA promoter to control fruit softening in Fragaria vesca. Plant Physiology 189:1037−49 doi: 10.1093/plphys/kiac091 |
[83] |
Qiu D, Xiao J, Ding X, Xiong M, Cai M, et al. 2007. OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling. Molecular Plant-Microbe Interactions 20:492−99 doi: 10.1094/MPMI-20-5-0492 |
[84] |
Guo R, Qiao H, Zhao J, Wang X, Tu M, et al. 2018. The Grape VlWRKY3 Gene Promotes Abiotic and Biotic Stress Tolerance in Transgenic Arabidopsis thaliana. Frontiers in Plant Science 9:545 doi: 10.3389/fpls.2018.00545 |
[85] |
Jia H, Wang C, Wang F, Liu S, Li G, et al. 2015. GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana. PLoS One 10:e0120646 doi: 10.1371/journal.pone.0120646 |
[86] |
Liu X, Song Y, Xing F, Wang N, Wen F, et al. 2016. GhWRKY25, a group I WRKY gene from cotton, confers differential tolerance to abiotic and biotic stresses in transgenic Nicotiana benthamiana. Protoplasma 253:1265−81 doi: 10.1007/s00709-015-0885-3 |
[87] |
Sun Y, Yu D. 2015. Activated expression of AtWRKY53 negatively regulates drought tolerance by mediating stomatal movement. Plant Cell Reports 34:1295−306 doi: 10.1007/s00299-015-1787-8 |
[88] |
Song Y, Chen L, Zhang L, Yu D. 2010. Overexpression of OsWRKY72 gene interferes in the abscisic acid signal and auxin transport pathway of Arabidopsis. Journal of Biosciences 35:459−71 doi: 10.1007/s12038-010-0051-1 |
[89] |
Dai X, Wang Y, Zhang W. 2016. OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice. Journal of Experimental Botany 67:947−60 doi: 10.1093/jxb/erv515 |
[90] |
Yokotani N, Sato Y, Tanabe S, Chujo T, Shimizu T, et al. 2013. WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance. Journal of Experimental Botany 64:5085−97 doi: 10.1093/jxb/ert298 |
[91] |
Wang H, Hao J, Chen X, Hao Z, Wang X, et al. 2007. Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Molecular Biology 65:799−815 doi: 10.1007/s11103-007-9244-x |
[92] |
Wang F, Hou X, Tang J, Wang Z, Wang S, et al. 2012. A novel cold-inducible gene from Pak-choi (Brassica campestris ssp. chinensis), BcWRKY46, enhances the cold, salt and dehydration stress tolerance in transgenic tobacco. Molecular Biology Reports 39:4553−64 doi: 10.1007/s11033-011-1245-9 |
[93] |
Wang Z, Zhu Y, Wang L, Liu X, Liu Y, et al. 2009. A WRKY transcription factor participates in dehydration tolerance in Boea hygrometrica by binding to the W-box elements of the galactinol synthase (BhGolS1) promoter. Planta 230:1155−66 doi: 10.1007/s00425-009-1014-3 |
[94] |
Li H, Xu Y, Xiao Y, Zhu Z, Xie X, et al. 2010. Expression and functional analysis of two genes encoding transcription factors, VpWRKY1 and VpWRKY2, isolated from Chinese wild Vitis pseudoreticulata. Planta 232:1325−37 doi: 10.1007/s00425-010-1258-y |
[95] |
Zhu Z, Shi J, Cao J, He M, Wang Y. 2012. VpWRKY3, a biotic and abiotic stress-related transcription factor from the Chinese wild Vitis pseudoreticulata. Plant Cell Reports 31:2109−20 doi: 10.1007/s00299-012-1321-1 |
[96] |
Wei W, Zhang Y, Han L, Guan Z, Chai T. 2008. A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco. Plant Cell Reports 27:795−803 doi: 10.1007/s00299-007-0499-0 |
[97] |
Skibbe M, Qu N, Galis I, Baldwin IT. 2008. Induced plant defenses in the natural environment: Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory. The Plant Cell 20:1984−2000 doi: 10.1105/tpc.108.058594 |
[98] |
Yang G, Zhang W, Liu Z, Yi-Maer AY, Zhai M, Xu Z. 2017. Both Jr WRKY 2 and Jr WRKY 7 of Juglans regia mediate responses to abiotic stresses and abscisic acid through formation of homodimers and interaction. Plant Biology 19:268−78 doi: 10.1111/plb.12524 |
[99] |
Yang Z, Chi X, Guo F, Jin X, Luo H, et al. 2020. SbWRKY30 enhances the drought tolerance of plants and regulates a drought stress-responsive gene, SbRD19, in sorghum. Journal of Plant Physiology 246-247:153142 doi: 10.1016/j.jplph.2020.153142 |
[100] |
Song Y, Li J, Sui Y, Han G, Zhang Y, et al. 2020. The sweet sorghum SbWRKY50 is negatively involved in salt response by regulating ion homeostasis. Plant Molecular Biology 102:603−14 doi: 10.1007/s11103-020-00966-4 |
[101] |
Dong Q, Zheng W, Duan D, Huang D, Wang Q, et al. 2020. MdWRKY30, a group IIa WRKY gene from apple, confers tolerance to salinity and osmotic stresses in transgenic apple callus and Arabidopsis seedlings. Plant Science 299:110611 doi: 10.1016/j.plantsci.2020.110611 |
[102] |
Wang J, Tao F, Tian W, Guo Z, Chen X, et al. 2017. The wheat WRKY transcription factors TaWRKY49 and TaWRKY62 confer differential high-temperature seedling-plant resistance to Puccinia striiformis f. sp. tritici. PLoS One 12:e0181963 doi: 10.1371/journal.pone.0181963 |
[103] |
Cai R, Dai W, Zhang C, Wang Y, Wu M, et al. 2017. The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants. Planta 246:1215−31 doi: 10.1007/s00425-017-2766-9 |