[1] |
Lin-Wang K, Bolitho K, Grafton K, Kortstee A, Karunairetnam S, et al. 2010. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biology 10:50 doi: 10.1186/1471-2229-10-50 |
[2] |
Rahim MA, Busatto N, Trainotti L. 2014. Regulation of anthocyanin biosynthesis in peach fruits. Planta 240:913−929 doi: 10.1007/s00425-014-2078-2 |
[3] |
Ryan KG, Swinny EE, Markham KR, Winefield C. 2020. Flavonoid gene expression and UV photoprotection in transgenic and mutant Petunia leaves. Phytochemistry 59:23−32 doi: 10.1016/S0031-9422(01)00404-6 |
[4] |
Li L, He Y, Ge H, Liu Y, Chen H. 2021. Functional characterization of SmMYB86, a negative regulator of anthocyanin biosynthesis in eggplant (Solanum melongena L.). Plant Science 302:110696 doi: 10.1016/j.plantsci.2020.110696 |
[5] |
Mazza G, Kay CD, Cottrell T, Holub BJ. 2002. Absorption of anthocyanins from blueberries and serum antioxidant status in human subjects. Journal of Agricultural and Food Chemistry 50:7731−37 doi: 10.1021/jf020690l |
[6] |
Sun C, Deng L, Du M, Zhao J, Chen Q, et al. 2020. A transcriptional network promotes anthocyanin biosynthesis in tomato flesh. Molecular Plant 13:42−58 doi: 10.1016/j.molp.2019.10.010 |
[7] |
Grotewold E. 2006. The genetics and biochemistry of floral pigments. Annual Review of Plant Biology 57:761−80 doi: 10.1146/annurev.arplant.57.032905.105248 |
[8] |
Lu Z, Cao H, Pan L, Niu L, Wei B, et al. 2021. Two loss-of-function alleles of the glutathione S-transferase (GST) gene cause anthocyanin deficiency in flower and fruit skin of peach (Prunus persica). The Plant Journal 107:1320−31 doi: 10.1111/tpj.15312 |
[9] |
Gonzalez A, Zhao M, Leavitt JM, Lloyd AM. 2008. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. The Plant Journal 53:814−27 doi: 10.1111/j.1365-313X.2007.03373.x |
[10] |
Hichri I, Heppel SC, Pillet J, Léon C, Czemmel S, et al. 2010. The basic helix-loop-helix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine. Molecular Plant 3:509−23 doi: 10.1093/mp/ssp118 |
[11] |
Tuan PA, Bai S, Yaegaki H, Tamura T, Hihara S, et al. 2015. The crucial role of PpMYB10.1 in anthocyanin accumulation in peach and relationships between its allelic type and skin color phenotype. BMC Plant Biology 15:280 doi: 10.1186/s12870-015-0664-5 |
[12] |
Khan IA, Cao K, Guo J, Li Y, Wang Q, et al. 2022. Identification of key gene networks controlling anthocyanin biosynthesis in peach flower. Plant Science 316:111151 doi: 10.1016/j.plantsci.2021.111151 |
[13] |
Uematsu C, Katayama H, Makino I, Inagaki A, Arakawa O, et al. 2014. Peace, a MYB-like transcription factor, regulates petal pigmentation in flowering peach 'Genpei' bearing variegated and fully pigmented flowers. Journa of Experimental Botany 65:1081−94 doi: 10.1093/jxb/ert456 |
[14] |
Zhou Y, Zhou H, Lin-Wang K, Vimolmangkang S, Espley RV, et al. 2014. Transcriptome analysis and transient transformation suggest an ancient duplicated MYB transcription factor as a candidate gene for leaf red coloration in peach. BMC Plant Biology 14:388 doi: 10.1186/s12870-014-0388-y |
[15] |
He Y, Zhang X, Li L, Sun Z, Li J, et al. 2021. SPX4 interacts with both PHR1 and PAP1 to regulate critical steps in phosphorus-status-dependent anthocyanin biosynthesis. New Phytologist 230:205−217 doi: 10.1111/nph.17139 |
[16] |
Wang Y, Liu W, Wang X, Yang R, Wu Z, et al. 2020. MiR156 regulates anthocyanin biosynthesis through SPL targets and other microRNAs in poplar. Horticulture Research 7:118 doi: 10.1038/s41438-020-00341-w |
[17] |
Ma H, Yang T, Li Y, Zhang J, Wu T, et al. 2021. The long noncoding RNA MdLNC499 bridges MdWRKY1 and MdERF109 function to regulate early-stage light-induced anthocyanin accumulation in apple fruit. The Plant cell 33:3309−30 doi: 10.1093/plcell/koab188 |
[18] |
Shin J, Park E, Choi G. 2007. PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis. The Plant Journal 49:981−94 doi: 10.1111/j.1365-313X.2006.03021.x |
[19] |
Li Y, Mao K, Zhao C, Zhao X, Zhang H, et al. 2012. MdCOP1 ubiquitin E3 ligases interact with MdMYB1 to regulate light-induced anthocyanin biosynthesis and red fruit coloration in apple. Plant Physiology 160:1011−22 doi: 10.1104/pp.112.199703 |
[20] |
An J, Qu F, Yao J, Wang X, You C, et al. 2017. The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple. Horticulture Research 4:17023 doi: 10.1038/hortres.2017.23 |
[21] |
Li C, Wu J, Hu K, Wei S, Sun H, et al. 2020. PyWRKY26 and PybHLH3 cotargeted the PyMYB114 promoter to regulate anthocyanin biosynthesis and transport in red-skinned pears. Horticulture Research 7:37 doi: 10.1038/s41438-020-0254-z |
[22] |
An J, Zhang X, Bi S, You C, Wang X, et al. 2020. The ERF transcription factor MdERF38 promotes drought stress-induced anthocyanin biosynthesis in apple. The Plant Journal 101:573−89 doi: 10.1111/tpj.14555 |
[23] |
Ni J, Bai S, Zhao Y, Qian M, Tao R, et al. 2019. Ethylene response factors Pp4ERF24 and Pp12ERF96 regulate blue light-induced anthocyanin biosynthesis in 'Red Zaosu' pear fruits by interacting with MYB114. Plant Molecular Biology 99:67−78 doi: 10.1007/s11103-018-0802-1 |
[24] |
Nesi N, Debeaujon I, Jond C, Stewart AJ, Jenkins GI, et al. 2002. The TRANSPARENT TESTA16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat. The Plant Cell 14:2463−79 doi: 10.1105/tpc.004127 |
[25] |
Zhou H, Lin-Wang K, Wang H, Gu C, Dare AP, et al. 2015. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors. The Plant Journal 82:105−21 doi: 10.1111/tpj.12792 |
[26] |
Qi T, Song S, Ren Q, Wu D, Huang H, et al. 2011. The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. The Plant Cell 23:1795−814 doi: 10.1105/tpc.111.083261 |
[27] |
Souer E, van Houwelingen A, Kloos D, Mol J, Koes R. 1996. The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85:159−70 doi: 10.1016/S0092-8674(00)81093-4 |
[28] |
Fu B, Wang W, Liu X, Duan X, Allan AC, et al. 2021. An ethylene-hypersensitive methionine sulfoxide reductase regulated by NAC transcription factors increases methionine pool size and ethylene production during kiwifruit ripening. New Phytologist 232:237−51 doi: 10.1111/nph.17560 |
[29] |
Guo Z, Zhang Y, Yao J, Xie Z, Zhang Y, et al. 2021. The NAM/ATAF1/2/CUC2 transcription factor PpNAC. A59 enhances PpERF. A16 expression to promote ethylene biosynthesis during peach fruit ripening. Horticulture Research 8:209 doi: 10.1038/s41438-021-00644-6 |
[30] |
Chen H, Wang JP, Liu H, Li H, Lin YCJ, et al. 2019. Hierarchical transcription factor and chromatin binding network for wood formation in Populus trichocarpa. The Plant cell 31:602−26 doi: 10.1105/tpc.18.00620 |
[31] |
Wang H, Zhang Y, Wang T, Yang Q, Yang, Y, et al. 2021. An alternative splicing variant of PtRD26 delays leaf senescence by regulating multiple NAC transcription factors in Populus. The Plant Cell 33:1594−614 doi: 10.1093/plcell/koab046 |
[32] |
Shahnejat-Bushehri S, Tarkowska D, Sakuraba Y, Balazadeh S. 2016. Arabidopsis NAC transcription factor JUB1 regulates GA/BR metabolism and signalling. Nature Plants 2:16013 doi: 10.1038/nplants.2016.13 |
[33] |
Olsen AN, Ernst HA, Leggio LL, Skriver K. 2005. NAC transcription factors: structurally distinct, functionally diverse. Trends in Plant Science 10:1360−85 doi: 10.1016/j.tplants.2004.12.010 |
[34] |
Sun Q, Jiang S, Zhang T, Xu H, Fang H, et al. 2019. Apple NAC transcription factor MdNAC52 regulates biosynthesis of anthocyanin and proanthocyanidin through MdMYB9 and MdMYB11. Plant Science 289:110286 doi: 10.1016/j.plantsci.2019.110286 |
[35] |
Jiang G, Li Z, Song Y, Zhu H, Lin S, et al. 2019. LcNAC13 physically interacts with LcR1MYB1 to coregulate anthocyanin biosynthesis-related genes during litchi fruit ripening. Biomolecules 9:135 doi: 10.3390/biom9040135 |
[36] |
Cheng J, Zhang M, Tan B, Jiang Y, Zheng X, et al. 2019. A single nucleotide mutation in GID1c disrupts its interaction with DELLA1 and causes a GA-insensitive dwarf phenotype in peach. Plant Biotechnology Journal 17:1723−35 doi: 10.1111/pbi.13094 |
[37] |
Li L, Zhou Y, Cheng X, Sun J, Marita JM, et al. 2003. Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. PNAS 100:4939−44 doi: 10.1073/pnas.0831166100 |
[38] |
Wang X, An J, Liu X, Su L, You C, et al. 2018. The nitrate-responsive protein MdBT2 regulates anthocyanin biosynthesis by interacting with the MdMYB1 transcription factor. Plant Physiology 178:890−906 doi: 10.1104/pp.18.00244 |
[39] |
Li Z, Li J, Ye X, Zheng X, Tan B, et al. 2022. VvERF95 regulates chlorophyll degradation by transcriptional activation of VvPAO1 causing grape rachis degreening after harvesting. Scientia Horticulturae 303:111224 doi: 10.1016/j.scienta.2022.111224 |
[40] |
Wang J, Zhou H, Zhao Y, Jiang C, Li J, et al. 2021. PagGRF12a interacts with PagGIF1b to regulate secondary xylem development through modulating PagXND1a expression in Populus alba × P. glandulosa. Journal of Integrative Plant Biology 63:1683−94 doi: 10.1111/jipb.13102 |
[41] |
Jiang Y, Chen J, Zheng X, Tan B, Ye X, et al. 2022. Multiple indeterminate domain (IDD)–DELLA1 complexes participate in gibberellin feedback regulation in peach. Plant Molecular Biology 109:147−57 doi: 10.1007/s11103-022-01263-y |
[42] |
Zhou H, Liao L, Xu S, Ren F, Zhao J, et al. 2018. Two amino acid changes in the R3 repeat cause functional divergence of two clustered MYB10 genes in peach. Plant Molecular Biology 98:169−183 doi: 10.1007/s11103-018-0773-2 |
[43] |
Zhao Y, Dong W, Zhu Y, Allan AC, Lin-Wang K, et al. 2020. PpGST1, an anthocyanin-related glutathione S-transferase gene, is essential for fruit coloration in peach. Plant Biotechnology Journal 18:1284−95 doi: 10.1111/pbi.13291 |
[44] |
Ríos P, Argyris J, Vegas J, Leida C, Kenigswald M, et al. 2017. ETHQV6.3 is involved in melon climacteric fruit ripening and is encoded by a NAC domain transcription factor. The Plant Journal 91:671−83 doi: 10.1111/tpj.13596 |
[45] |
Lü P, Yu S, Zhu N, Chen Y, Zhou B, et al. 2018. Genome encode analyses reveal the basis of convergent evolution of fleshy fruit ripening. Nature Plants 4:784−91 doi: 10.1038/s41477-018-0249-z |
[46] |
Gao Y, Wei W, Zhao X, Tan X, Fan Z, et al. 2018. A NAC transcription factor, NOR-like1, is a new positive regulator of tomato fruit ripening. Horticulture Research 5:75 doi: 10.1038/s41438-018-0111-5 |
[47] |
Calle A, Wünsch A. 2020. Multiple-population QTL mapping of maturity and fruit-quality traits reveals LG4 region as a breeding target in sweet cherry (Prunus avium L.). Horticulture Research 7:127 doi: 10.1038/s41438-020-00349-2 |
[48] |
Zhang S, Chen Y, Zhao L, Li C, Yu J, et al. 2020. A novel NAC transcription factor, MdNAC42, regulates anthocyanin accumulation in red-fleshed apple by interacting with MdMYB10. Tree Physiology 40:413−23 doi: 10.1093/treephys/tpaa004 |
[49] |
Jin Z, Wang J, Cao X, Wei C, Kuang J, et al. 2022. Peach fruit PpNAC1 activates PpFAD3-1 transcription to provide ω-3 fatty acids for the synthesis of short-chain flavor volatiles. Horticulture Research 9:uhac085 doi: 10.1093/hr/uhac085 |
[50] |
Lafountain AM, Yuan YW. 2021. Repressors of anthocyanin biosynthesis. New Phytologist 231:933−49 doi: 10.1111/nph.17397 |
[51] |
Albert NW, Davies KM, Lewis DH, Zhang H, Montefiori M, et al. 2014. A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. The Plant Cell 26:962−80 doi: 10.1105/tpc.113.122069 |
[52] |
Sakai M, Yamagishi M, Matsuyama K. 2019. Repression of anthocyanin biosynthesis by R3-MYB transcription factors in lily (Lilium spp.). Plant Cell Reports 38:609−22 doi: 10.1007/s00299-019-02391-4 |
[53] |
Gou J, Felippes FF, Liu C, Weigel D, Wang J. 2011. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. The Plant Cell 23:1512−22 doi: 10.1105/tpc.111.084525 |
[54] |
Jiang Y, Liu C, Yan D, Wen X, Liu Y, et al. 2017. MdHB1 down-regulation activates anthocyanin biosynthesis in the white fleshed apple cultivar 'Granny Smith'. Journal of Experimental Botany 68:1055−69 doi: 10.1093/jxb/erx029 |
[55] |
Zheng T, Tan W, Yang H, Zhang L, Li T, et al. 2019. Regulation of anthocyanin accumulation via MYB75/HAT1/TPL-mediated transcriptional repression. PLoS Genet 15:e1007993 doi: 10.1371/journal.pgen.1007993 |
[56] |
Tao R, Bai S, Ni J, Yang Q, Zhao Y, et al. 2018. The blue light signal transduction pathway is involved in anthocyanin accumulation in ‘Red Zaosu’ pear. Planta 248:37−48 doi: 10.1007/s00425-018-2877-y |
[57] |
Wang Y, Wang N, Xu H, Jiang S, Fang H, et al. 2018. Auxin regulates anthocyanin biosynthesis through the Aux/IAA-ARF signaling pathway in apple. Horticulture Research 5:59 doi: 10.1038/s41438-018-0068-4 |
[58] |
Liu CC, Chi C, Jin LJ, Zhu J, Yu JQ, et al. 2018. The bZIP transcription factor HY5 mediates CRY1a-induced anthocyanin biosynthesis in tomato. Plant, Cell & Environment 41:1762−75 doi: 10.1111/pce.13171 |
[59] |
Rajagopalan R, Vaucheret H, Trejo J, Bartel DP. 2006. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes & Development 20:3407−25 doi: 10.1101/gad.1476406 |
[60] |
Puranik S, Sahu PP, Srivastava PS, Prasad M, et al. 2012. NAC proteins: regulation and role in stress tolerance. Trends in Plant Science 17:369−81 doi: 10.1016/j.tplants.2012.02.004 |
[61] |
Zhang J, Li L, Huang L, Zhang M, Chen Z, et al. 2019. Maize NAC-domain retained splice variants act as dominant negatives to interfere with the full-length NAC counterparts. Plant Science 289:110256 doi: 10.1016/j.plantsci.2019.110256 |
[62] |
Shen Z, Confolent C, Lambert P, Poëssel JL, Quilot-Turion B, et al. 2013. Characterization and genetic mapping of a new blood-flesh trait controlled by the single dominant locus DBF in peach. Tree Genetics & Genomes 12:1435−46 doi: 10.1007/s11295-013-0649-1 |
[63] |
Werner DJ, Creller MA, Chaparro JX. 1998. Inheritance of the blood-flesh trait in peach. Hortscience 33:393−414 doi: 10.21273/hortsci.33.7.1243 |
[64] |
Gillen AM, Bliss FA. 2005. Identification and mapping of markers linked to the Mi gene for root-not nematode resistance in peach. Journal of the American Society for Horticultural Science 130:24−33 doi: 10.21273/JASHS.130.1.24 |