[1]

Zeng X, Liu H, Du H, Wang S, Yang W, et al. 2018. Soybean MADS-box gene GmAGL1 promotes flowering via the photoperiod pathway. BMC Genomics 19:51

doi: 10.1186/s12864-017-4402-2
[2]

Mandel MA, Yanofsky MF. 1995. A gene triggering flower formation in Arabidopsis. Nature 377:522−24

doi: 10.1038/377522a0
[3]

Adamczyk BJ, Fernandez DE. 2009. MIKC* MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis. Plant Physiology 149:1713−23

doi: 10.1104/pp.109.135806
[4]

Busi MV, Bustamante C, D'Angelo C, Hidalgo-Cuevas M, Boggio SB, et al. 2003. MADS-box genes expressed during tomato seed and fruit development. Plant Molecular Biology 52:801−15

doi: 10.1023/A:1025001402838
[5]

Dreni L, Zhang D. 2016. Flower development: the evolutionary history and functions of the AGL6 subfamily MADS-box genes. Journal of Experimental Botany 67:1625−38

doi: 10.1093/jxb/erw046
[6]

Zik M, Irish VF. 2003. Flower development: initiation, differentiation, and diversification. Annual Review of Cell and Developmental Biology 19:119−40

doi: 10.1146/annurev.cellbio.19.111301.134635
[7]

Causier B, Schwarz-Sommer Z, Davies B. 2010. Floral organ identity: 20 years of ABCs. Seminars In Cell & Developmental Biology 21:73−79

doi: 10.1016/j.semcdb.2009.10.005
[8]

Burko Y, Shleizer-Burko S, Yanai O, Shwartz I, Zelnik ID, et al. 2013. A role for APETALA1/fruitfull transcription factors in tomato leaf development. The Plant Cell 25:2070−83

doi: 10.1105/tpc.113.113035
[9]

Krizek BA, Meyerowitz EM. 1996. The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development 122:11−22

doi: 10.1242/dev.122.1.11
[10]

Theißen G. 2001. Development of floral organ identity: Stories from the MADS house. Current Opinion in Plant Biology 4:75−85

doi: 10.1016/S1369-5266(00)00139-4
[11]

Angenent GC, Franken J, Busscher M, van Dijken A, van Went JL, et al. 1995. A novel class of MADS box genes lnvolved in ovule development in Petunia. The Plant Cell 7:1569−82

doi: 10.2307/3870020
[12]

Melzer R, Verelst W, Theißen G. 2009. The class E floral homeotic protein SEPALLATA3 is sufficient to loop DNA in 'floral quartet'-like complexes in vitro. Nucleic Acids Research 37:144−57

doi: 10.1093/nar/gkn900
[13]

Jack T, Fox GL, Meyerowitz EM. 1994. Arabidopsis homeotic gene APETALA3 ectopic expression: transcriptional and posttranscriptional regulation determine floral organ identity. Cell 76:703−16

doi: 10.1016/0092-8674(94)90509-6
[14]

Jack T, Brockman LL, Meyerowitz EM. 1992. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68:683−97

doi: 10.1016/0092-8674(92)90144-2
[15]

Schwarz-Sommer Z, Hue I, Huijser P, Flor PJ, Hansen R, et al. 1992. Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. The EMBO Journal 11:251−63

doi: 10.1002/j.1460-2075.1992.tb05048.x
[16]

Tröbner W, Ramirez L, Motte P, Hue I, Huijser P, et al. 1992. GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. The EMBO Journal 11:4693−704

doi: 10.1002/j.1460-2075.1992.tb05574.x
[17]

Zahn LM, Leebens-Mack J, DePamphilis CW, Ma H, Theissen G. 2005. To B or Not to B a flower: the role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms. Journal of heredity 96:225−40

doi: 10.1093/jhered/esi033
[18]

Hernández-Hernández T, Martínez-Castilla LP, Alvarez-Buylla ER. 2007. Functional diversification of B MADS-box homeotic regulators of flower development: Adaptive evolution in protein-protein interaction domains after major gene duplication events. Molecularl Biology and Evolution 24:465−81

doi: 10.1093/molbev/msl182
[19]

Kramer EM, Dorit RL, Irish VF. 1998. Molecular evolution of genes controlling petal and stamen development: Duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149:765−83

doi: 10.1093/genetics/149.2.765
[20]

Kramer EM, Su HJ, Wu CC, Hu JM. 2006. A simplified explanation for the frameshift mutation that created a novel C-terminal motif in the APETALA3 gene lineage. BMC Evolutionary Biology 6:30

doi: 10.1186/1471-2148-6-30
[21]

Okabe Y, Yamaoka T, Ariizumi T, Ushijima K, Kojima M, et al. 2019. Aberrant Stamen Development is Associated with Parthenocarpic Fruit Set Through Up-Regulation of Gibberellin Biosynthesis in Tomato. Plant and Cell Physiology 60:38−51

doi: 10.1093/pcp/pcy184
[22]

Tanaka N, Tanaka-Moriya Y, Mimida N, Honda C, Iwanami H, et al. 2016. The analysis of transgenic apples with down-regulated expression of MdPISTILLATA. Plant Biotechnology 33:395−401

doi: 10.5511/plantbiotechnology.16.1109a
[23]

Yao JL, Dong YH, Morris BAM. 2001. Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor. PNAS 98:1306−11

doi: 10.1073/pnas.98.3.1306
[24]

Mazzucato A, Olimpieri I, Siligato F, Picarella ME, Soressi GP. 2008. Characterization of genes controlling stamen identity and development in a parthenocarpic tomato mutant indicates a role for the DEFICIENS ortholog in the control of fruit set. Physiologia Plantarum 132:526−37

doi: 10.1111/j.1399-3054.2007.01035.x
[25]

de Martino G, Pan I, Emmanuel E, Levy A, Irish VF. 2006. Functional analyses of two tomato APETALA3 genes demonstrate diversification in their roles in regulating floral development. The Plant Cell 18:1833−45

doi: 10.1105/tpc.106.042978
[26]

Cao X, Liu X, Wang X, Yang M, van Giang T, et al. 2019. B-class MADS-box TM6 is a candidate gene for tomato male sterile-1526. Theoretical and Applied Genetics 132:2125−35

doi: 10.1007/s00122-019-03342-z
[27]

Yao JL, Xu J, Tomes S, Cui W, Luo Z, et al. 2018. Ectopic expression of the PISTILLATA homologous MdPI inhibits fruit tissue growth and changes fruit shape in apple. Plant Direct 2:e00051

doi: 10.1002/pld3.51
[28]

Zouine M, Maza E, Djari A, Lauvernier M, Frasse P, et al. 2017. TomExpress, a unified tomato RNA-Seq platform for visualization of expression data, clustering and correlation networks. The Plant Journal 92:727−35

doi: 10.1111/tpj.13711
[29]

Liu L, Wang Z, Liu J, Liu F, Zhai R, et al. 2018. Histological, hormonal and transcriptomic reveal the changes upon gibberellin-induced parthenocarpy in pear fruit. Horticulture Research 5:1

doi: 10.1038/s41438-017-0012-z
[30]

Roque E, Serwatowska J, Cruz Rochina M, Wen J, Mysore KS, et al. 2013. Functional specialization of duplicated AP3-like genes in Medicago truncatula. The Plant Journal 73:663−75

doi: 10.1111/tpj.12068
[31]

Martín-Pizarro C, Triviño JC, Posé D. 2019. Functional analysis of the TM6 MADS-box gene in the octoploid strawberry by CRISPR/Cas9-directed mutagenesis. Journal of Experimental Botany 70:885−95

doi: 10.1093/jxb/ery400
[32]

Zhai R, Wang Z, Zhang S, Meng G, Song L, et al. 2016. Two MYB transcription factors regulate flavonoid biosynthesis in pear fruit (Pyrus bretschneideri Rehd.). Journal of Experimental Botany 67:1275−84

doi: 10.1093/jxb/erv524
[33]

van der Linden CG, Vosman B, Smulders MJM. 2002. Cloning and characterization of four apple MADS box genes isolated from vegetative tissue. Journal of Experimental Botany 53:1025−36

doi: 10.1093/jexbot/53.371.1025
[34]

Suog SK, Yu GH, An G. 1999. Characterization of MdMADS2, a member of the SQUAMOSA subfamily of genes, in apple. Plant physiology 120:969−78

doi: 10.1104/pp.120.4.969
[35]

Wada M, Oshino H, Tanaka N, Mimida N, Moriya-Tanaka Y, et al. 2018. Expression and functional analysis of apple MdMADS13 on flower and fruit formation. Plant Biotechnology 35:207−13

doi: 10.5511/plantbiotechnology.18.0510a
[36]

Pnueli L, Hareven D, Rounsley SD, Yanofsky MF, Lifschitz E. 1994. Isolation of the tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants. The Plant Cell 6:163−73

doi: 10.1105/tpc.6.2.163
[37]

Vrebalov J, Pan IL, Arroyo AJM, McQuinn R, Chung M, et al. 2009. Fleshy fruit expansion and ripening are regulated by the Tomato SHATTERPROOF gene TAGL1. The Plant Cell 21:3041−62

doi: 10.1105/tpc.109.066936
[38]

Ampomah-Dwamena C, Morris BA, Sutherland P, Veit B, Yao JL. 2002. Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion. Plant Physiology 130:605−17

doi: 10.1104/pp.005223
[39]

Poupin MJ, Federici F, Medina C, Matus JT, Timmermann T, et al. 2007. Isolation of the three grape sub-lineages of B-class MADS-box TM6, PISTILLATA and APETALA3 genes which are differentially expressed during flower and fruit development. Gene 404:10−24

doi: 10.1016/j.gene.2007.08.005
[40]

Boss PK, Vivier M, Matsumoto S, Dry IB, Thomas MR. 2001. A cDNA from grapevine (Vitis vinifera L.), which shows homology to AGAMOUS and SHATTERPROOF, is not only expressed in flowers but also throughout berry development. Plant Molecular Biology 45:541−53

doi: 10.1023/A:1010634132156
[41]

Wang Y, Liu Z, Wu J, Hong L, Liang J, et al. 2021. MADS-box protein complex VvAG2, VvSEP3 and VvAGL11 regulates the formation of ovules in Vitis vinifera L. cv. 'Xiangfei'. Genes 12:647

doi: 10.3390/genes12050647
[42]

Cong L, Wu T, Liu H, Wang H, Zhang H, et al. 2020. CPPU may induce gibberellin-independent parthenocarpy associated with PbRR9 in 'Dangshansu' pear. Horticulture Research 7:7

doi: 10.1038/s41438-020-0285-5
[43]

Zhang H, Han W, Wang H, Cong L, Zhai R, et al. 2021. Downstream of GA4, PbCYP78A6 participates in regulating cell cycle-related genes and parthenogenesis in pear (Pyrus bretshneideri Rehd.). BMC Plant Biology 21:292

doi: 10.1186/s12870-021-03098-z
[44]

Otero AJ, Rodríguez I, Falero G. 1991. 2,3,5-Triphenyl tetrazolium chloride (TTC) reduction as exponential growth phase marker for mammalian cells in culture and for myeloma hybridization experiments. Cytotechnology 6:137−42

doi: 10.1007/BF00373031
[45]

Tovar-Méndez A, Kumar A, Kondo K, Ashford A, Baek YS, et al. 2014. Restoring pistil-side self-incompatibility factors recapitulates an interspecific reproductive barrier between tomato species. The Plant Journal 77:727−36

doi: 10.1111/tpj.12424
[46]

Wang H, Zhang H, Liang F, Cong L, Song L, et al. 2021. PbEIL1 acts upstream of PbCysp1 to regulate ovule senescence in seedless pear. Horticulture Research 8:59

doi: 10.1038/s41438-021-00491-5
[47]

Song S, Qi T, Huang H, Xie D. 2013. Regulation of stamen development by coordinated actions of jasmonate, auxin and gibberellin in Arabidopsis. Molecular Plant 6:1065−73

doi: 10.1093/mp/sst054
[48]

Wasternack C. 2007. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Annals of Botany 100:681−97

doi: 10.1093/aob/mcm079
[49]

Nagpal P, Ellis CM, Weber H, Ploense SE, Barkawi LS, et al. 2005. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132:4107−18

doi: 10.1242/dev.01955
[50]

Cecchetti V, Altamura MM, Falasca G, Costantino P, Cardarelli M. 2008. Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. The Plant Cell 20:1760−74

doi: 10.1105/tpc.107.057570
[51]

Yao X, Tian L, Yang J, Zhao Y, Zhu Y, et al. 2018. Auxin production in diploid microsporocytes is necessary and sufficient for early stages of pollen development. PLoS Genetics 14:e1007397

doi: 10.1371/journal.pgen.1007397
[52]

Kovaleva LV, Voronkov AS, Zakharova EV, Andreev IM. 2018. ABA and IAA control microsporogenesis in Petunia hybrida L. Protoplasma 255:751−59

doi: 10.1007/s00709-017-1185-x
[53]

Wang M, Hoekstra S, van Bergen S, Lamers GEM, Oppedijk BJ, et al. 1999. Apoptosis in developing anthers and the role of ABA in this process during androgenesis in Hordeum vulgare L. Plant Molecular Biology 39:489−501

doi: 10.1023/A:1006198431596
[54]

Eckardt NA. 2002. Abscisic acid biosynthesis gene underscores the complexity of sugar, stress, and hormone interactions. The Plant Cell 14:2645−49

doi: 10.1105/tpc.141110
[55]

Chen R, Zhao X, Shao Z, Wei Z, Wang Y, et al. 2007. Rice UDP-glucose pyrophosphorylase1 is essential for pollen callose deposition and its cosuppression results in a new type of thermosensitive genic male sterility. The Plant Cell 19:847−61

doi: 10.1105/tpc.106.044123
[56]

Zanor MI, Osorio S, Nunes-Nesi A, Carrari F, Lohse M, et al. 2009. RNA interference of LIN5 in tomato confirms its role in controlling brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cleavage for normal fruit development and fertility. Plant Physiology 150:1204−18

doi: 10.1104/pp.109.136598
[57]

Jacobsen SE, Olszewski NE. 1991. Characterization of the arrest in anther development associated with gibberellin deficiency of the gib-1 mutant of tomato. Plant Physiology 97:409−14

doi: 10.1104/pp.97.1.409
[58]

Li P, Tian J, Guo C, Luo S, Li J. 2021. Interaction of gibberellin and other hormones in almond anthers: phenotypic and physiological changes and transcriptomic reprogramming. Horticulture Research 8:94

doi: 10.1038/s41438-021-00527-w