[1]
|
Zeng X, Liu H, Du H, Wang S, Yang W, et al. 2018. Soybean MADS-box gene GmAGL1 promotes flowering via the photoperiod pathway. BMC Genomics 19:51 doi: 10.1186/s12864-017-4402-2
CrossRef Google Scholar
|
[2]
|
Mandel MA, Yanofsky MF. 1995. A gene triggering flower formation in Arabidopsis. Nature 377:522−24 doi: 10.1038/377522a0
CrossRef Google Scholar
|
[3]
|
Adamczyk BJ, Fernandez DE. 2009. MIKC* MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis. Plant Physiology 149:1713−23 doi: 10.1104/pp.109.135806
CrossRef Google Scholar
|
[4]
|
Busi MV, Bustamante C, D'Angelo C, Hidalgo-Cuevas M, Boggio SB, et al. 2003. MADS-box genes expressed during tomato seed and fruit development. Plant Molecular Biology 52:801−15 doi: 10.1023/A:1025001402838
CrossRef Google Scholar
|
[5]
|
Dreni L, Zhang D. 2016. Flower development: the evolutionary history and functions of the AGL6 subfamily MADS-box genes. Journal of Experimental Botany 67:1625−38 doi: 10.1093/jxb/erw046
CrossRef Google Scholar
|
[6]
|
Zik M, Irish VF. 2003. Flower development: initiation, differentiation, and diversification. Annual Review of Cell and Developmental Biology 19:119−40 doi: 10.1146/annurev.cellbio.19.111301.134635
CrossRef Google Scholar
|
[7]
|
Causier B, Schwarz-Sommer Z, Davies B. 2010. Floral organ identity: 20 years of ABCs. Seminars In Cell & Developmental Biology 21:73−79 doi: 10.1016/j.semcdb.2009.10.005
CrossRef Google Scholar
|
[8]
|
Burko Y, Shleizer-Burko S, Yanai O, Shwartz I, Zelnik ID, et al. 2013. A role for APETALA1/fruitfull transcription factors in tomato leaf development. The Plant Cell 25:2070−83 doi: 10.1105/tpc.113.113035
CrossRef Google Scholar
|
[9]
|
Krizek BA, Meyerowitz EM. 1996. The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development 122:11−22 doi: 10.1242/dev.122.1.11
CrossRef Google Scholar
|
[10]
|
Theißen G. 2001. Development of floral organ identity: Stories from the MADS house. Current Opinion in Plant Biology 4:75−85 doi: 10.1016/S1369-5266(00)00139-4
CrossRef Google Scholar
|
[11]
|
Angenent GC, Franken J, Busscher M, van Dijken A, van Went JL, et al. 1995. A novel class of MADS box genes lnvolved in ovule development in Petunia. The Plant Cell 7:1569−82 doi: 10.2307/3870020
CrossRef Google Scholar
|
[12]
|
Melzer R, Verelst W, Theißen G. 2009. The class E floral homeotic protein SEPALLATA3 is sufficient to loop DNA in 'floral quartet'-like complexes in vitro. Nucleic Acids Research 37:144−57 doi: 10.1093/nar/gkn900
CrossRef Google Scholar
|
[13]
|
Jack T, Fox GL, Meyerowitz EM. 1994. Arabidopsis homeotic gene APETALA3 ectopic expression: transcriptional and posttranscriptional regulation determine floral organ identity. Cell 76:703−16 doi: 10.1016/0092-8674(94)90509-6
CrossRef Google Scholar
|
[14]
|
Jack T, Brockman LL, Meyerowitz EM. 1992. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68:683−97 doi: 10.1016/0092-8674(92)90144-2
CrossRef Google Scholar
|
[15]
|
Schwarz-Sommer Z, Hue I, Huijser P, Flor PJ, Hansen R, et al. 1992. Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. The EMBO Journal 11:251−63 doi: 10.1002/j.1460-2075.1992.tb05048.x
CrossRef Google Scholar
|
[16]
|
Tröbner W, Ramirez L, Motte P, Hue I, Huijser P, et al. 1992. GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. The EMBO Journal 11:4693−704 doi: 10.1002/j.1460-2075.1992.tb05574.x
CrossRef Google Scholar
|
[17]
|
Zahn LM, Leebens-Mack J, DePamphilis CW, Ma H, Theissen G. 2005. To B or Not to B a flower: the role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms. Journal of heredity 96:225−40 doi: 10.1093/jhered/esi033
CrossRef Google Scholar
|
[18]
|
Hernández-Hernández T, Martínez-Castilla LP, Alvarez-Buylla ER. 2007. Functional diversification of B MADS-box homeotic regulators of flower development: Adaptive evolution in protein-protein interaction domains after major gene duplication events. Molecularl Biology and Evolution 24:465−81 doi: 10.1093/molbev/msl182
CrossRef Google Scholar
|
[19]
|
Kramer EM, Dorit RL, Irish VF. 1998. Molecular evolution of genes controlling petal and stamen development: Duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149:765−83 doi: 10.1093/genetics/149.2.765
CrossRef Google Scholar
|
[20]
|
Kramer EM, Su HJ, Wu CC, Hu JM. 2006. A simplified explanation for the frameshift mutation that created a novel C-terminal motif in the APETALA3 gene lineage. BMC Evolutionary Biology 6:30 doi: 10.1186/1471-2148-6-30
CrossRef Google Scholar
|
[21]
|
Okabe Y, Yamaoka T, Ariizumi T, Ushijima K, Kojima M, et al. 2019. Aberrant Stamen Development is Associated with Parthenocarpic Fruit Set Through Up-Regulation of Gibberellin Biosynthesis in Tomato. Plant and Cell Physiology 60:38−51 doi: 10.1093/pcp/pcy184
CrossRef Google Scholar
|
[22]
|
Tanaka N, Tanaka-Moriya Y, Mimida N, Honda C, Iwanami H, et al. 2016. The analysis of transgenic apples with down-regulated expression of MdPISTILLATA. Plant Biotechnology 33:395−401 doi: 10.5511/plantbiotechnology.16.1109a
CrossRef Google Scholar
|
[23]
|
Yao JL, Dong YH, Morris BAM. 2001. Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor. PNAS 98:1306−11 doi: 10.1073/pnas.98.3.1306
CrossRef Google Scholar
|
[24]
|
Mazzucato A, Olimpieri I, Siligato F, Picarella ME, Soressi GP. 2008. Characterization of genes controlling stamen identity and development in a parthenocarpic tomato mutant indicates a role for the DEFICIENS ortholog in the control of fruit set. Physiologia Plantarum 132:526−37 doi: 10.1111/j.1399-3054.2007.01035.x
CrossRef Google Scholar
|
[25]
|
de Martino G, Pan I, Emmanuel E, Levy A, Irish VF. 2006. Functional analyses of two tomato APETALA3 genes demonstrate diversification in their roles in regulating floral development. The Plant Cell 18:1833−45 doi: 10.1105/tpc.106.042978
CrossRef Google Scholar
|
[26]
|
Cao X, Liu X, Wang X, Yang M, van Giang T, et al. 2019. B-class MADS-box TM6 is a candidate gene for tomato male sterile-1526. Theoretical and Applied Genetics 132:2125−35 doi: 10.1007/s00122-019-03342-z
CrossRef Google Scholar
|
[27]
|
Yao JL, Xu J, Tomes S, Cui W, Luo Z, et al. 2018. Ectopic expression of the PISTILLATA homologous MdPI inhibits fruit tissue growth and changes fruit shape in apple. Plant Direct 2:e00051 doi: 10.1002/pld3.51
CrossRef Google Scholar
|
[28]
|
Zouine M, Maza E, Djari A, Lauvernier M, Frasse P, et al. 2017. TomExpress, a unified tomato RNA-Seq platform for visualization of expression data, clustering and correlation networks. The Plant Journal 92:727−35 doi: 10.1111/tpj.13711
CrossRef Google Scholar
|
[29]
|
Liu L, Wang Z, Liu J, Liu F, Zhai R, et al. 2018. Histological, hormonal and transcriptomic reveal the changes upon gibberellin-induced parthenocarpy in pear fruit. Horticulture Research 5:1 doi: 10.1038/s41438-017-0012-z
CrossRef Google Scholar
|
[30]
|
Roque E, Serwatowska J, Cruz Rochina M, Wen J, Mysore KS, et al. 2013. Functional specialization of duplicated AP3-like genes in Medicago truncatula. The Plant Journal 73:663−75 doi: 10.1111/tpj.12068
CrossRef Google Scholar
|
[31]
|
Martín-Pizarro C, Triviño JC, Posé D. 2019. Functional analysis of the TM6 MADS-box gene in the octoploid strawberry by CRISPR/Cas9-directed mutagenesis. Journal of Experimental Botany 70:885−95 doi: 10.1093/jxb/ery400
CrossRef Google Scholar
|
[32]
|
Zhai R, Wang Z, Zhang S, Meng G, Song L, et al. 2016. Two MYB transcription factors regulate flavonoid biosynthesis in pear fruit (Pyrus bretschneideri Rehd.). Journal of Experimental Botany 67:1275−84 doi: 10.1093/jxb/erv524
CrossRef Google Scholar
|
[33]
|
van der Linden CG, Vosman B, Smulders MJM. 2002. Cloning and characterization of four apple MADS box genes isolated from vegetative tissue. Journal of Experimental Botany 53:1025−36 doi: 10.1093/jexbot/53.371.1025
CrossRef Google Scholar
|
[34]
|
Suog SK, Yu GH, An G. 1999. Characterization of MdMADS2, a member of the SQUAMOSA subfamily of genes, in apple. Plant physiology 120:969−78 doi: 10.1104/pp.120.4.969
CrossRef Google Scholar
|
[35]
|
Wada M, Oshino H, Tanaka N, Mimida N, Moriya-Tanaka Y, et al. 2018. Expression and functional analysis of apple MdMADS13 on flower and fruit formation. Plant Biotechnology 35:207−13 doi: 10.5511/plantbiotechnology.18.0510a
CrossRef Google Scholar
|
[36]
|
Pnueli L, Hareven D, Rounsley SD, Yanofsky MF, Lifschitz E. 1994. Isolation of the tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants. The Plant Cell 6:163−73 doi: 10.1105/tpc.6.2.163
CrossRef Google Scholar
|
[37]
|
Vrebalov J, Pan IL, Arroyo AJM, McQuinn R, Chung M, et al. 2009. Fleshy fruit expansion and ripening are regulated by the Tomato SHATTERPROOF gene TAGL1. The Plant Cell 21:3041−62 doi: 10.1105/tpc.109.066936
CrossRef Google Scholar
|
[38]
|
Ampomah-Dwamena C, Morris BA, Sutherland P, Veit B, Yao JL. 2002. Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion. Plant Physiology 130:605−17 doi: 10.1104/pp.005223
CrossRef Google Scholar
|
[39]
|
Poupin MJ, Federici F, Medina C, Matus JT, Timmermann T, et al. 2007. Isolation of the three grape sub-lineages of B-class MADS-box TM6, PISTILLATA and APETALA3 genes which are differentially expressed during flower and fruit development. Gene 404:10−24 doi: 10.1016/j.gene.2007.08.005
CrossRef Google Scholar
|
[40]
|
Boss PK, Vivier M, Matsumoto S, Dry IB, Thomas MR. 2001. A cDNA from grapevine (Vitis vinifera L.), which shows homology to AGAMOUS and SHATTERPROOF, is not only expressed in flowers but also throughout berry development. Plant Molecular Biology 45:541−53 doi: 10.1023/A:1010634132156
CrossRef Google Scholar
|
[41]
|
Wang Y, Liu Z, Wu J, Hong L, Liang J, et al. 2021. MADS-box protein complex VvAG2, VvSEP3 and VvAGL11 regulates the formation of ovules in Vitis vinifera L. cv. 'Xiangfei'. Genes 12:647 doi: 10.3390/genes12050647
CrossRef Google Scholar
|
[42]
|
Cong L, Wu T, Liu H, Wang H, Zhang H, et al. 2020. CPPU may induce gibberellin-independent parthenocarpy associated with PbRR9 in 'Dangshansu' pear. Horticulture Research 7:7 doi: 10.1038/s41438-020-0285-5
CrossRef Google Scholar
|
[43]
|
Zhang H, Han W, Wang H, Cong L, Zhai R, et al. 2021. Downstream of GA4, PbCYP78A6 participates in regulating cell cycle-related genes and parthenogenesis in pear (Pyrus bretshneideri Rehd.). BMC Plant Biology 21:292 doi: 10.1186/s12870-021-03098-z
CrossRef Google Scholar
|
[44]
|
Otero AJ, Rodríguez I, Falero G. 1991. 2,3,5-Triphenyl tetrazolium chloride (TTC) reduction as exponential growth phase marker for mammalian cells in culture and for myeloma hybridization experiments. Cytotechnology 6:137−42 doi: 10.1007/BF00373031
CrossRef Google Scholar
|
[45]
|
Tovar-Méndez A, Kumar A, Kondo K, Ashford A, Baek YS, et al. 2014. Restoring pistil-side self-incompatibility factors recapitulates an interspecific reproductive barrier between tomato species. The Plant Journal 77:727−36 doi: 10.1111/tpj.12424
CrossRef Google Scholar
|
[46]
|
Wang H, Zhang H, Liang F, Cong L, Song L, et al. 2021. PbEIL1 acts upstream of PbCysp1 to regulate ovule senescence in seedless pear. Horticulture Research 8:59 doi: 10.1038/s41438-021-00491-5
CrossRef Google Scholar
|
[47]
|
Song S, Qi T, Huang H, Xie D. 2013. Regulation of stamen development by coordinated actions of jasmonate, auxin and gibberellin in Arabidopsis. Molecular Plant 6:1065−73 doi: 10.1093/mp/sst054
CrossRef Google Scholar
|
[48]
|
Wasternack C. 2007. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Annals of Botany 100:681−97 doi: 10.1093/aob/mcm079
CrossRef Google Scholar
|
[49]
|
Nagpal P, Ellis CM, Weber H, Ploense SE, Barkawi LS, et al. 2005. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132:4107−18 doi: 10.1242/dev.01955
CrossRef Google Scholar
|
[50]
|
Cecchetti V, Altamura MM, Falasca G, Costantino P, Cardarelli M. 2008. Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. The Plant Cell 20:1760−74 doi: 10.1105/tpc.107.057570
CrossRef Google Scholar
|
[51]
|
Yao X, Tian L, Yang J, Zhao Y, Zhu Y, et al. 2018. Auxin production in diploid microsporocytes is necessary and sufficient for early stages of pollen development. PLoS Genetics 14:e1007397 doi: 10.1371/journal.pgen.1007397
CrossRef Google Scholar
|
[52]
|
Kovaleva LV, Voronkov AS, Zakharova EV, Andreev IM. 2018. ABA and IAA control microsporogenesis in Petunia hybrida L. Protoplasma 255:751−59 doi: 10.1007/s00709-017-1185-x
CrossRef Google Scholar
|
[53]
|
Wang M, Hoekstra S, van Bergen S, Lamers GEM, Oppedijk BJ, et al. 1999. Apoptosis in developing anthers and the role of ABA in this process during androgenesis in Hordeum vulgare L. Plant Molecular Biology 39:489−501 doi: 10.1023/A:1006198431596
CrossRef Google Scholar
|
[54]
|
Eckardt NA. 2002. Abscisic acid biosynthesis gene underscores the complexity of sugar, stress, and hormone interactions. The Plant Cell 14:2645−49 doi: 10.1105/tpc.141110
CrossRef Google Scholar
|
[55]
|
Chen R, Zhao X, Shao Z, Wei Z, Wang Y, et al. 2007. Rice UDP-glucose pyrophosphorylase1 is essential for pollen callose deposition and its cosuppression results in a new type of thermosensitive genic male sterility. The Plant Cell 19:847−61 doi: 10.1105/tpc.106.044123
CrossRef Google Scholar
|
[56]
|
Zanor MI, Osorio S, Nunes-Nesi A, Carrari F, Lohse M, et al. 2009. RNA interference of LIN5 in tomato confirms its role in controlling brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cleavage for normal fruit development and fertility. Plant Physiology 150:1204−18 doi: 10.1104/pp.109.136598
CrossRef Google Scholar
|
[57]
|
Jacobsen SE, Olszewski NE. 1991. Characterization of the arrest in anther development associated with gibberellin deficiency of the gib-1 mutant of tomato. Plant Physiology 97:409−14 doi: 10.1104/pp.97.1.409
CrossRef Google Scholar
|
[58]
|
Li P, Tian J, Guo C, Luo S, Li J. 2021. Interaction of gibberellin and other hormones in almond anthers: phenotypic and physiological changes and transcriptomic reprogramming. Horticulture Research 8:94 doi: 10.1038/s41438-021-00527-w
CrossRef Google Scholar
|