[1]

Lin W, Chen H, Zhang Z, Xu Q, Tu N, et al. 2015. Res earch and prospect on physio-ecological properties of ratoon rice yield formation and its key cultivation technology. Chinese Journal of Eco-Agriculture 23(4):392−401

doi: 10.13930/j.cnki.cjea.150246
[2]

Huang J, Wu J, Chen H, Zhang Z, Fang C, et al. 2021. Nitrogen fertilizer management for main crop rice and its carrying-over effect on rhizosphere function and yield of ratoon rice. Chinese Journal of Rice Science 35(4):383−95

[3]

Xie H. 2010. Studies on High-yielding cultivation characteristics of super hybrid rice grown as ratoon rice. Hybrid Rice 25:17−26

doi: 10.16267/j.cnki.1005-3956.2010.s1.065
[4]

Peng S. 2016. Dilemma and Way-out of Hybrid Rice during the Transition Period in China. Acta Agronomica Sinica 42:313−19

doi: 10.3724/sp.j.1006.2016.00313
[5]

Lin W. 2019. Developmental status and problems of rice ratooning. Journal of Integrative Agriculture 18(1):246−47

doi: 10.1016/S2095-3119(19)62568-2
[6]

Wu D, Li Z, Guo C, Zou J, Pang Z, et al. 2023. Dry matter partitioning properties and mechanism of ratooning rice and main crop (late season) synchronized in rice heading time. Acta Agronomica Sinica 49:755−71

[7]

Hansen B, Kristensen ES, Grant R, Høgh-Jensen H, Simmelsgaard SE, et al. 2000. Nitrogen leaching from conventional versus organic farming systems — a systems modelling approach. European Journal of Agronomy 13(1):65−82

[8]

Yu W, Jiang Z, Zhou Y, Ma Q, Shen S. 2007. Crop yield and fertilizer contribution under different fertilization systems. Chinese Journal of Eco-Agriculture 15(6):54−58

[9]

Liu S, Tong C, Wu J, Jiang P. 2007. Effect of ratio of organic manure/chemical fertilizer in fertilization on rice yield under the same condition. Acta Pedologica Sinica 44(1):106−12

[10]

Xu M, Li D, Li J, Qin D, Yasukazu H, et al. 2008. Effects of organic manure application combined with chemical fertilizers on nutrients absorption and yield of rice in Hunan of China. Agricult ural Sciences in China 7(10):1245−52

[11]

Meng L, Zhang X, Jiang X, Wang Q, Huang Q, et al. 2009. Effects of partial mineral nitrogen substitution by organic fertilizer nitrogen on the yields of rice grains and their proper substitution rate. Scientia Agricultura Sinica 42(2):532−42

[12]

Dong C, Gao J, Zeng X, Liu Q, Xu M, et al. 2014. Effects of long-term organic manure and inorganic fertilizer combined application on rice yield and soil organic carbon content in reddish paddy fields. Plant Nutrition and Fertilizer Science 20(2):336−45

[13]

Ji J, Hou H, Liu Y, Liu X, Feng Z, et al. 2015. Effects of long-term fertilization on yield variation trend, yield stability and sustainability in the double cropping rice system. Acta Pedologic Sinica 52(3):607−19

[14]

Gu J, Han L, Dong M, Chen P, Qiao Z. 2017. Studies on the difference of dry matter accumulation and transportation, spikelets formation and the grain filling of Japonica rice varieties with different panicle types. Journal of Yangzhou University (Agricultural and Life Science Edition) 38(4):68−73,88

[15]

Shang Y. 2001. Influence of organic-inorganic compound fertilizers on nitrogen recovery in paddy rice. Journal of Southwest University (Natural Science Edition) 23(3):262−66

doi: 10.3969/j.issn.1673-9868.2001.03.024
[16]

Li J, Cang Z, Jiao F, Wang Q, Zhai R. 2015. Effect of different nitrogen levels on nitrogen utilization of rice in cold region. Anhui Agricultural Science Bulletin 21(8):15−16

doi: 10.16377/j.cnki.issn1007-7731.2015.08.008
[17]

Wang J, Hang Y, Huang W, Ding Y, Chang H. 2008. Effect of dry cultivation of Shanyou 63 on the grain filling characteristics and dry matter accumulation. Agricultural Research in the Arid Areas 26(5):32−35

[18]

Zhang X, Sun Y, Wang W, Yuan M, Wu G, et al. 2018. Organic manure partial replacing chemical fertilizer: effect on supply ability and apparent budget of rice soil nitrogen. Journal of Agriculture 8(12):28−34

[19]

Zhang W. 2015. Rice-wheat system response characteristics and nitrogen balance analysis of the whter-borne organic fertilizer. Thesis. Nanjing Agricultural University, China.

[20]

Liu H, Jiang H, Sun G, Shen M, Chen L, et al. 2017. Effect of different organic-inorganic fertilizers combination ratio on nitrogen use efficiency of rice. Soil and Fertilizer Sciences in China 5:61−66

[21]

Tao L, Chu G, Liu T, Tang C, Li J, et al. 2014. Impacts of organic manure partial substitution for chemical fertilizer on cotton yield, soil microbial community and enzyme activities in mono-cropping system in drip irrigation condition. Acta Ecologica Sinica 34(21):6137−46

doi: 10.5846/stxb201301290184
[22]

Liu Y, Yu J, Li X, Xu Y, Shen Q. 2012. Effects of combined application of organic and inorganic fertilizers on soil microbiological characteristics in a wheat-rice rotation system. Journal of Agro-Environment Science 31(5):989−94

[23]

Pan G, Zhou P, Li Z, Smith P, Zhang X, et al. 2009. Combined inorganic/organic fertilization enhances N efficiency and increases rice productivity through organic carbon accumulation in a rice paddy from the Tai Lake region, China. Agriculture Ecosystems & Environment 131(3):274−80

doi: 10.1016/j.agee.2009.01.020
[24]

Chen H, Yang D, Liang Y, Zhang Z, Liang K, et al. 2010. Effect of nitrogen application strategy in the first cropping rice on dry matter accumulation, grain yield and nitrogen utilization efficiency of the first cropping rice and its ratoon rice crop. Chinese Journal of Eco-Agriculture 18(1):50−56

doi: 10.3724/SP.J.1011.2010.00050
[25]

Malhi SS, Nyborg M, Solberg ED, Dyck MF, Puurveen D. 2011. Improving crop yield and N uptake with long-term straw retention in two contrasting soil types. Field Crops Research 124(3):378−91

doi: 10.1016/j.fcr.2011.07.009
[26]

Jaffar BS, Basavarajappa R, Babalad HB. 2016. Influence of organic and inorganic nutrient management practices on yield, economics and quality parameters of aerobic rice. Research on Crops 17(2):178−87

doi: 10.5958/2348-7542.2016.00032.2
[27]

Khatun A, Bhuiya MSU, Saleque MA. 2016. Nitrogen uptake from organic manures and chemical fertilizer and yield of lowland rice. Bulletin of the Institute of Tropical Agriculture, Kyushu University (39):13−27

doi: 10.11189/BITA.39.013