[1] |
Huang B. 2021. Grass research for a productive, healthy and sustainable society. Grass Research 1:1 doi: 10.48130/gr-2021-0001 |
[2] |
Qian Y, Follett RF. 2002. Assessing Soil Carbon Sequestration in Turfgrass Systems Using Long-Term Soil Testing Data. Agronomy Journal 94:930−35 doi: 10.2134/agronj2002.9300 |
[3] |
Chen Y, Pettersen T, Kvalbein A, Aamlid TS. 2018. Playing quality, growth rate, thatch accumulation and tolerance to moss and annual bluegrass invasion as influenced by irrigation strategies on red fescue putting greens. Journal of Agronomy and Crop Science 204:185−95 doi: 10.1111/jac.12246 |
[4] |
Lai J, Han L. 2022. Progress and challenges in China turfgrass abiotic stress resistance research. Frontiers in Plant Science 13:922175 doi: 10.3389/fpls.2022.922175 |
[5] |
Alvarez ME, Savouré A, Szabados L. 2022. Proline metabolism as regulatory hub. Trends in Plant Science 27:39−55 doi: 10.1016/j.tplants.2021.07.009 |
[6] |
Cao L, Han L, Zhang H, Xin H, Imtiaz M, et al. 2015. Isolation and characterization of pyrroline-5-carboxylate synthetase gene from perennial ryegrass (Lolium perenne L. ). Acta Physiologiae Plantarum 37:62 doi: 10.1007/s11738-015-1808-9 |
[7] |
Szabados L, Savouré A. 2010. Proline: A multifunctional amino acid. Trends in Plant Science 15:89−97 doi: 10.1016/j.tplants.2009.11.009 |
[8] |
Huang B, DaCosta M, Jiang Y. 2014. Research advances in mechanisms of turfgrass tolerance to abiotic stresses: from physiology to molecular biology. Critical Reviews in Plant Sciences 33:141−89 doi: 10.1080/07352689.2014.870411 |
[9] |
Bocian A, Zwierzykowski Z, Rapacz M, Koczyk G, Ciesiołka D, Kosmala A. 2015. Metabolite profiling during cold acclimation of Lolium perenne genotypes distinct in the level of frost tolerance. Journal of Applied Genetics 56:439−49 doi: 10.1007/s13353-015-0293-6 |
[10] |
Chan Z, Shi H. 2015. Improved abiotic stress tolerance of bermudagrass by exogenous small molecules. Plant Signaling & Behavior 10:e991577 doi: 10.4161/15592324.2014.991577 |
[11] |
Zuo ZF, Kang HG, Park MY, Jeong H, Sun HJ, et al. 2019. Zoysia japonica MYC type transcription factor ZjICE1 regulates cold tolerance in transgenic Arabidopsis. Plant Science 289:110254 doi: 10.1016/j.plantsci.2019.110254 |
[12] |
Katuwal KB, Xiao B, Jespersen D. 2020. Physiological responses and tolerance mechanisms of seashore paspalum and centipedegrass exposed to osmotic and iso-osmotic salt stresses. Journal of Plant Physiology 248:153154 doi: 10.1016/j.jplph.2020.153154 |
[13] |
Fichman Y, Gerdes SY, Kovács H, Szabados L, Zilberstein A, et al. 2015. Evolution of proline biosynthesis: enzymology, bioinformatics, genetics, and transcriptional regulation. Biological Reviews 90:1065−99 doi: 10.1111/brv.12146 |
[14] |
Ashraf M, Foolad MR. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany 59:206−16 doi: 10.1016/j.envexpbot.2005.12.006 |
[15] |
Matysik J, Alia A, Bhalu B, Mohanty P. 2002. Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Current Science 82:525−32 |
[16] |
Smirnoff N, Cumbes QJ. 1989. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057−60 doi: 10.1016/0031-9422(89)80182-7 |
[17] |
Schat H, Sharma SS, Vooijs R. 1997. Heavy metal-induced accumulation of free proline in a metal-tolerant and a nontolerant ecotype of Silene vulgaris. Physiologia Plantarum 101:477−82 doi: 10.1111/j.1399-3054.1997.tb01026.x |
[18] |
Sharma SS, Dietz KJ. 2006. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany 57:711−26 doi: 10.1093/jxb/erj073 |
[19] |
Verbruggen N, Villarroel R, Van Montagu M. 1993. Osmoregulation of a pyrroline-5-carboxylate reductase gene in Arabidopsis thaliana. Plant Physiology 103:771−81 doi: 10.1104/pp.103.3.771 |
[20] |
Hong Z, Lakkineni K, Zhang Z, Verma DP. 2000. Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiology 122:1129−36 doi: 10.1104/pp.122.4.1129 |
[21] |
Ghosh UK, Islam MN, Siddiqui MN, Cao X, Khan MAR. 2022. Proline, a multifaceted signalling molecule in plant responses to abiotic stress: understanding the physiological mechanisms. Plant Biology 24:227−39 doi: 10.1111/plb.13363 |
[22] |
Aalipour H, Nikbakht A, Ghasemi M, Amiri R. 2020. Morpho-physiological and biochemical responses of two turfgrass species to arbuscular mycorrhizal fungi and humic acid under water stress condition. Journal of Soil Science and Plant Nutrition 20:566−76 doi: 10.1007/s42729-019-00146-4 |
[23] |
Manuchehri R, Salehi H. 2014. Physiological and biochemical changes of common bermudagrass (Cynodon dactylon [L.] Pers.) under combined salinity and deficit irrigation stresses. South African Journal of Botany 92:83−88 doi: 10.1016/j.sajb.2014.02.006 |
[24] |
Katuwal KB, Xiao B, Jespersen D. 2020. Root physiological and biochemical responses of seashore paspalum and centipedegrass exposed to iso-osmotic salt and drought stresses. Crop Science 60:1077−89 doi: 10.1002/csc2.20029 |
[25] |
Huang S, Jiang S, Liang J, Chen M, Shi Y. 2019. Current knowledge of bermudagrass responses to abiotic stresses. Breeding Science 69:215−26 doi: 10.1270/jsbbs.18164 |
[26] |
Zhang L, Zhong T, Xu L, Han L, Zhang X. 2015. Water deficit irrigation impacts on antioxidant metabolism associated with freezing tolerance in creeping bentgrass. Journal of the American Society for Horticultural Science 140:323−32 doi: 10.21273/JASHS.140.4.323 |
[27] |
Khoshkholghsima NA, Rohollahi I. 2015. Evaluating biochemical response of some selected perennial grasses under drought stress in Iran. Horticulture, Environment, and Biotechnology 56:383−90 doi: 10.1007/s13580-015-0010-8 |
[28] |
Man D, Bao Y, Han L, Zhang X. 2011. Drought tolerance associated with proline and hormone metabolism in two tall fescue cultivars. HortScience horts 46:1027−32 doi: 10.21273/HORTSCI.46.7.1027 |
[29] |
Perlikowski D, Augustyniak A, Masajada K, Skirycz A, Soja AM, et al. 2019. Structural and metabolic alterations in root systems under limited water conditions in forage grasses of Lolium-Festuca complex. Plant Science 283:211−23 doi: 10.1016/j.plantsci.2019.02.001 |
[30] |
Sarmast MK, Salehi H, Niazi A. 2015. Biochemical differences underlie varying drought tolerance in four Festuca arundinacea Schreb. genotypes subjected to short water scarcity. Acta Physiologiae Plantarum 37:192 doi: 10.1007/s11738-015-1942-4 |
[31] |
Chapman C, Rossi S, Yuan B, Huang B. 2022. Differential regulation of amino acids and nitrogen for drought tolerance and poststress recovery in creeping bentgrass. Journal of the American Society for Horticultural Science 147:208−15 doi: 10.21273/JASHS05215-22 |
[32] |
Tan M, Hassan MJ, Peng Y, Feng G, Huang L, et al. 2022. Polyamines metabolism interacts with γ-aminobutyric acid, proline and nitrogen metabolisms to affect drought tolerance of creeping bentgrass. International Journal of Molecular Sciences 23:2779 doi: 10.3390/ijms23052779 |
[33] |
He A, Niu S, Yang D, Ren W, Zhao L, et al. 2021. Two PGPR strains from the rhizosphere of Haloxylon ammodendron promoted growth and enhanced drought tolerance of ryegrass. Plant Physiology and Biochemistry 161:74−85 doi: 10.1016/j.plaphy.2021.02.003 |
[34] |
Shi H, Ye T, Chan Z. 2013. Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass (Cynodon dactylon (L). Pers.). Plant Physiology and Biochemistry 71:226−34 doi: 10.1016/j.plaphy.2013.07.021 |
[35] |
Hatamzadeh A, Molaahmad Nalousi A, Ghasemnezhad M, Biglouei MH. 2015. The potential of nitric oxide for reducing oxidative damage induced by drought stress in two turfgrass species, creeping bentgrass and tall fescue. Grass and Forage Science 70:538−48 doi: 10.1111/gfs.12135 |
[36] |
Mahdavi S, Kafi M, Fallahi E, Shokrpour M, Tabrizi L. 2017. Drought and biostimulant impacts on mineral nutrients, ambient and reflected light-based chlorophyll index, and performance of perennial ryegrass. Journal of Plant Nutrition 40:2248−58 doi: 10.1080/01904167.2016.1237650 |
[37] |
Sheikh Mohammadi MH, Etemadi N, Arab MM, Aalifar M, Arab M, et al. 2017. Molecular and physiological responses of Iranian perennial ryegrass as affected by Trinexapac ethyl, Paclobutrazol and Abscisic acid under drought stress. Plant Physiology and Biochemistry 111:129−43 doi: 10.1016/j.plaphy.2016.11.014 |
[38] |
Zhang N, Han L, Xu L, Zhang X. 2018. Ethephon seed treatment impacts on drought tolerance of Kentucky bluegrass seedlings. HortTechnology 28:319−26 doi: 10.21273/HORTTECH03976-18 |
[39] |
Chen Z, Wang Z, Yang Y, Li M, Xu B. 2018. Abscisic acid and brassinolide combined application synergistically enhances drought tolerance and photosynthesis of tall fescue under water stress. Scientia Horticulturae 228:1−9 doi: 10.1016/j.scienta.2017.10.004 |
[40] |
Li Z, Fu J, Shi D, Peng Y. 2020. Myo-inositol enhances drought tolerance in creeping bentgrass through alteration of osmotic adjustment, photosynthesis, and antioxidant defense. Crop Science 60:2149−58 doi: 10.1002/csc2.20186 |
[41] |
Zhang J, Gao Y, Xu L, Han L. 2021. Transcriptome analysis of Kentucky bluegrass subject to drought and ethephon treatment. PLoS One 16:e0261472 doi: 10.1371/journal.pone.0261472 |
[42] |
Saud S, Fahad S, Cui G, Chen Y, Anwar S. 2020. Determining nitrogen isotopes discrimination under drought stress on enzymatic activities, nitrogen isotope abundance and water contents of Kentucky bluegrass. Scientific Reports 10:6415 doi: 10.1038/s41598-020-63548-w |
[43] |
Chen ZL, Li XM, Zhang LH. 2014. Effect of salicylic acid pretreatment on drought stress responses of zoysiagrass (Zoysia japonica). Russian Journal of Plant Physiology 61:619−25 doi: 10.1134/S1021443714050057 |
[44] |
Ma Y, Shukla V, Merewitz EB. 2017. Transcriptome analysis of creeping bentgrass exposed to drought stress and polyamine treatment. PLoS One 12:e0175848 doi: 10.1371/journal.pone.0175848 |
[45] |
Liu N, Shen Y, Huang B. 2015. Osmoregulants involved in osmotic adjustment for differential drought tolerance in different bentgrass genotypes. Journal of the American Society for Horticultural Science 140:605−13 doi: 10.21273/JASHS.140.6.605 |
[46] |
Li J, Ma J, Guo H, Zong J, Chen J, et al. 2018. Growth and physiological responses of two phenotypically distinct accessions of centipedegrass (Eremochloa ophiuroides (Munro) Hack.) to salt stress. Plant Physiology and Biochemistry 126:1−10 doi: 10.1016/j.plaphy.2018.02.018 |
[47] |
Uddin MK, Juraimi AS. 2013. Salinity tolerance turfgrass: history and prospects. Scientific World Journal 2013:409413 doi: 10.1155/2013/409413 |
[48] |
Xu R, Fujiyama H. 2013. Comparison of ionic concentration, organic solute accumulation and osmotic adaptation in Kentucky bluegrass and tall fescue under NaCl stress. Soil Science and Plant Nutrition 59:168−79 doi: 10.1080/00380768.2012.763215 |
[49] |
Soliman WS, Sugiyama S, Abbas AM. 2018. Contribution of avoidance and tolerance strategies towards salinity stress resistance in eight C3 turfgrass species. Horticulture, Environment, and Biotechnology 59:29−36 doi: 10.1007/s13580-018-0004-4 |
[50] |
Liu T, Zhuang L, Huang B. 2019. Metabolic adjustment and gene expression for root sodium transport and calcium signaling contribute to salt tolerance in Agrostis grass species. Plant and Soil 443:219−32 doi: 10.1007/s11104-019-04140-8 |
[51] |
Puyang X, An M, Xu L, Han L, Zhang X. 2016. Protective effect of exogenous spermidine on ion and polyamine metabolism in Kentucky bluegrass under salinity stress. Horticulture, Environment, and Biotechnology 57:11−19 doi: 10.1007/s13580-016-0113-x |
[52] |
Sun S, An M, Han L, Yin S. 2015. Foliar application of 24-epibrassinolide improved salt stress tolerance of perennial ryegrass. HortScience 50:1518−23 doi: 10.21273/HORTSCI.50.10.1518 |
[53] |
Wu W, Zhang Q, Ervin EH, Yang Z, Zhang X. 2017. Physiological mechanism of enhancing salt stress tolerance of perennial ryegrass by 24-epibrassinolide. Frontiers in Plant Science 8:1017 doi: 10.3389/fpls.2017.01017 |
[54] |
Ahmadi F, Nazari F, Ghaderi N, Teixeira da Silva JA. 2023. Assessment of morpho-physiological and biochemical responses of perennial ryegrass to gamma-aminobutyric acid (GABA) application under salinity stress using multivariate analyses techniques. Journal of Plant Growth Regulation 42:168−82 doi: 10.1007/s00344-021-10538-5 |
[55] |
Esmaeili S, Salehi H, Eshghi S. 2015. Silicon ameliorates the adverse effects of salinity on turfgrass growth and development. Journal of Plant Nutrition 38:1885−901 doi: 10.1080/01904167.2015.1069332 |
[56] |
Li H, Guo H, Zhang X, Fu J. 2014. Expression profiles of Pr5CS1 and Pr5CS2 genes and proline accumulation under salinity stress in perennial ryegrass (Lolium perenne L.). Plant Breeding 133:243−49 doi: 10.1111/pbr.12140 |
[57] |
Huang X, Chao D, Gao J, Zhu M, Shi M, et al. 2009. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes & Development 23:1805−17 doi: 10.1101/gad.1812409 |
[58] |
Cen H, Ye W, Liu Y, Li D, Wang K, et al. 2016. Overexpression of a chimeric gene, OsDST-SRDX, improved salt tolerance of perennial ryegrass. Scientific reports 6:27320 doi: 10.1038/srep27320 |
[59] |
Li Z, Zeng W, Cheng B, Xu J, Han L, et al. 2022. Turf quality and physiological responses to summer stress in four creeping bentgrass cultivars in a subtropical zone. Plants 11:665 doi: 10.3390/plants11050665 |
[60] |
Rossi S, Chapman C, Huang B. 2020. Suppression of heat-induced leaf senescence by γ-aminobutyric acid, proline, and ammonium nitrate through regulation of chlorophyll degradation in creeping bentgrass. Environmental and Experimental Botany 177:104116 doi: 10.1016/j.envexpbot.2020.104116 |
[61] |
Rossi S, Chapman C, Yuan B, Huang B. 2021. Improved heat tolerance in creeping bentgrass by γ-aminobutyric acid, proline, and inorganic nitrogen associated with differential regulation of amino acid metabolism. Plant Growth Regulation 93:231−42 doi: 10.1007/s10725-020-00681-6 |
[62] |
Chen Y, Guo Z, Dong L, Fu Z, Zheng Q, et al. 2021. Turf performance and physiological responses of native Poa species to summer stress in northeast China. PeerJ 9:e12252 doi: 10.7717/peerj.12252 |
[63] |
Xia F, Han Z, Zhu H, Dong K, Du L. 2020. Comparison of osmoprotectants and antioxidant enzymes of different wild Kentucky bluegrass in Shanxi province under high-temperature stress. European Journal of Horticultural Science 85:284−92 doi: 10.17660/eJHS.2020/85.4.10 |
[64] |
Sheikh-Mohamadi MH, Etemadi N, Arab M. 2018. Correlation of heat and cold tolerance in Iranian tall fescue ecotypes with reactive oxygen species scavenging and osmotic adjustment. HortScience 53:1062−8 doi: 10.21273/HORTSCI13088-18 |
[65] |
Sun T, Shao K, Huang Y, Lei Y, Tan L, et al. 2020. Natural variation analysis of perennial ryegrass in response to abiotic stress highlights LpHSFC1b as a positive regulator of heat stress. Environmental and Experimental Botany 179:104192 doi: 10.1016/j.envexpbot.2020.104192 |
[66] |
Xu Y, Huang B. 2018. Transcriptomic analysis reveals unique molecular factors for lipid hydrolysis, secondary cell-walls and oxidative protection associated with thermotolerance in perennial grass. BMC Genomics 19:70 doi: 10.1186/s12864-018-4437-z |
[67] |
Liu M, Sun T, Liu C, Zhang H, Wang W, et al. 2022. Integrated physiological and transcriptomic analyses of two warm- and cool-season turfgrass species in response to heat stress. Plant Physiology and Biochemistry 170:275−86 doi: 10.1016/j.plaphy.2021.12.013 |
[68] |
Zhang H, Wang Y, Wang W, Bao M, Chan Z. 2019. Physiological changes and DREB1s expression profiles of tall fescue in response to freezing stress. Scientia Horticulturae 245:116−24 doi: 10.1016/j.scienta.2018.09.052 |
[69] |
Chang Z, Sun B, Li D. 2017. Water withholding contributes to winter hardiness in perennial ryegrass (Lolium perenne L.). European Journal for Horticultural Science 82:31−37 doi: 10.17660/eJHS.2017/82.1.4 |
[70] |
Sarkar D, Bhowmik PC, Young-In-Kwon, Shetty K. 2009. Cold acclimation responses of three cool-season turfgrasses and the role of proline-associated pentose phosphate pathway. Journal of the American Society for Horticultural Science 134:210−20 doi: 10.21273/JASHS.134.2.210 |
[71] |
Hoffman L, DaCosta M, Bertrand A, Castonguay Y, Ebdon JS. 2014. Comparative assessment of metabolic responses to cold acclimation and deacclimation in annual bluegrass and creeping bentgrass. Environmental and Experimental Botany 106:197−206 doi: 10.1016/j.envexpbot.2013.12.018 |
[72] |
Gururani MA, Venkatesh J, Ganesan M, Strasser RJ, Han Y, et al. 2015. In vivo assessment of cold tolerance through chlorophyll-α fluorescence in transgenic zoysiagrass expressing mutant phytochrome A. PLoS One 10:e0127200 doi: 10.1371/journal.pone.0127200 |
[73] |
Fan J, Zhang W, Amombo E, Hu L, Kjorven JO, Chen L. 2020. Mechanisms of environmental stress tolerance in turfgrass. Agronomy 10:522 doi: 10.3390/agronomy10040522 |
[74] |
Wei S, Du Z, Gao F, Ke X, Li J, et al. 2015. Global transcriptome profiles of 'Meyer' zoysiagrass in response to cold stress. PLoS One 10:e0131153 doi: 10.1371/journal.pone.0131153 |
[75] |
Dong W, Ma X, Jiang H, Zhao C, Ma H. 2020. Physiological and transcriptome analysis of Poa pratensis var. anceps cv. Qinghai in response to cold stress. BMC Plant Biology 20:362 doi: 10.1186/s12870-020-02559-1 |
[76] |
Long S, Yan F, Yang L, Sun Z, Wei S. 2020. Responses of Manila Grass (Zoysia matrella) to chilling stress: From transcriptomics to physiology. PLoS One 15:e0235972 doi: 10.1371/journal.pone.0235972 |
[77] |
Feng W, Li J, Long S, Wei S. 2019. A DREB1 gene from zoysiagrass enhances Arabidopsis tolerance to temperature stresses without growth inhibition. Plant Science 278:20−31 doi: 10.1016/j.plantsci.2018.10.009 |
[78] |
Zhuang L, Yuan X, Chen Y, Xu B, Yang Z, et al. 2015. PpCBF3 from cold-tolerant Kentucky bluegrass involved in freezing tolerance associated with up-regulation of cold-related genes in transgenic Arabidopsis thaliana. PLoS One 10:e0132928 doi: 10.1371/journal.pone.0132928 |
[79] |
Zuo ZF, Kang HG, Park MY, Jeong H, Sun HJ, et al. 2019. Overexpression of ICE1, a regulator of cold-Induced transcriptome, confers cold tolerance to transgenic Zoysia japonica. Journal of Plant Biology 62:137−46 doi: 10.1007/s12374-018-0330-1 |
[80] |
Zhang H, Xu Q, Xu X, Liu HB, Zhi JK, et al. 2017. Transgenic tobacco plants expressing grass AstEXPA1 gene show improved performance to several stresses. Plant Biotechnology Reports 11:331−7 doi: 10.1007/s11816-017-0454-7 |
[81] |
Zhang H, Shi Y, Liu X, Wang R, Li J, Xu J. 2018. Transgenic creeping bentgrass plants expressing a Picea wilsonii dehydrin gene (PicW) demonstrate improved freezing tolerance. Molecular Biology Reports 45:1627−35 doi: 10.1007/s11033-018-4304-7 |
[82] |
Li X, Wang L, Li Y, Sun L, Cai S, et al. 2014. Comparative analyses of physiological responses of Cynodon dactylon accessions from Southwest China to sulfur dioxide toxicity. The Scientific World Journal 2014:916595 doi: 10.1155/2014/916595 |
[83] |
Li X, Cen H, Peng L, Li Y, Sun L, et al. 2015. Tolerance performance of the cool-season turfgrass species Festuca ovina, Lolium perenne, Agrostis tenuis, and Poa trivialis to sulfur dioxide stress. Journal of Plant Interactions 10:75−86 doi: 10.1080/17429145.2015.1019984 |
[84] |
Yang WZ, Fu JJ, Yang LY, Zhang X, Zheng YL, et al. 2014. Protective effects of complementary Ca2+ on low-light-induced oxidative damage in tall fescue. Russian Journal of Plant Physiology 61:818−27 doi: 10.1134/S1021443714060211 |
[85] |
Jia H, Hou D, O’Connor D, Pan S, Zhu J, et al. 2020. Exogenous phosphorus treatment facilitates chelation-mediated cadmium detoxification in perennial ryegrass (Lolium perenne L.). Journal of hazardous Materials 389:121849 doi: 10.1016/j.jhazmat.2019.121849 |
[86] |
Gururani MA, Ganesan M, Song IJ, Han Y, Kim JI, et al. 2016. Transgenic turfgrasses expressing hyperactive ser599Ala phytochrome a mutant exhibit abiotic stress tolerance. Journal of Plant Growth Regulation 35:11−21 doi: 10.1007/s00344-015-9502-0 |