[1]
|
Huang B. 2021. Grass research for a productive, healthy and sustainable society. Grass Research 1:1 doi: 10.48130/gr-2021-0001
CrossRef Google Scholar
|
[2]
|
Qian Y, Follett RF. 2002. Assessing Soil Carbon Sequestration in Turfgrass Systems Using Long-Term Soil Testing Data. Agronomy Journal 94:930−35 doi: 10.2134/agronj2002.9300
CrossRef Google Scholar
|
[3]
|
Chen Y, Pettersen T, Kvalbein A, Aamlid TS. 2018. Playing quality, growth rate, thatch accumulation and tolerance to moss and annual bluegrass invasion as influenced by irrigation strategies on red fescue putting greens. Journal of Agronomy and Crop Science 204:185−95 doi: 10.1111/jac.12246
CrossRef Google Scholar
|
[4]
|
Lai J, Han L. 2022. Progress and challenges in China turfgrass abiotic stress resistance research. Frontiers in Plant Science 13:922175 doi: 10.3389/fpls.2022.922175
CrossRef Google Scholar
|
[5]
|
Alvarez ME, Savouré A, Szabados L. 2022. Proline metabolism as regulatory hub. Trends in Plant Science 27:39−55 doi: 10.1016/j.tplants.2021.07.009
CrossRef Google Scholar
|
[6]
|
Cao L, Han L, Zhang H, Xin H, Imtiaz M, et al. 2015. Isolation and characterization of pyrroline-5-carboxylate synthetase gene from perennial ryegrass (Lolium perenne L. ). Acta Physiologiae Plantarum 37:62 doi: 10.1007/s11738-015-1808-9
CrossRef Google Scholar
|
[7]
|
Szabados L, Savouré A. 2010. Proline: A multifunctional amino acid. Trends in Plant Science 15:89−97 doi: 10.1016/j.tplants.2009.11.009
CrossRef Google Scholar
|
[8]
|
Huang B, DaCosta M, Jiang Y. 2014. Research advances in mechanisms of turfgrass tolerance to abiotic stresses: from physiology to molecular biology. Critical Reviews in Plant Sciences 33:141−89 doi: 10.1080/07352689.2014.870411
CrossRef Google Scholar
|
[9]
|
Bocian A, Zwierzykowski Z, Rapacz M, Koczyk G, Ciesiołka D, Kosmala A. 2015. Metabolite profiling during cold acclimation of Lolium perenne genotypes distinct in the level of frost tolerance. Journal of Applied Genetics 56:439−49 doi: 10.1007/s13353-015-0293-6
CrossRef Google Scholar
|
[10]
|
Chan Z, Shi H. 2015. Improved abiotic stress tolerance of bermudagrass by exogenous small molecules. Plant Signaling & Behavior 10:e991577 doi: 10.4161/15592324.2014.991577
CrossRef Google Scholar
|
[11]
|
Zuo ZF, Kang HG, Park MY, Jeong H, Sun HJ, et al. 2019. Zoysia japonica MYC type transcription factor ZjICE1 regulates cold tolerance in transgenic Arabidopsis. Plant Science 289:110254 doi: 10.1016/j.plantsci.2019.110254
CrossRef Google Scholar
|
[12]
|
Katuwal KB, Xiao B, Jespersen D. 2020. Physiological responses and tolerance mechanisms of seashore paspalum and centipedegrass exposed to osmotic and iso-osmotic salt stresses. Journal of Plant Physiology 248:153154 doi: 10.1016/j.jplph.2020.153154
CrossRef Google Scholar
|
[13]
|
Fichman Y, Gerdes SY, Kovács H, Szabados L, Zilberstein A, et al. 2015. Evolution of proline biosynthesis: enzymology, bioinformatics, genetics, and transcriptional regulation. Biological Reviews 90:1065−99 doi: 10.1111/brv.12146
CrossRef Google Scholar
|
[14]
|
Ashraf M, Foolad MR. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany 59:206−16 doi: 10.1016/j.envexpbot.2005.12.006
CrossRef Google Scholar
|
[15]
|
Matysik J, Alia A, Bhalu B, Mohanty P. 2002. Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Current Science 82:525−32
Google Scholar
|
[16]
|
Smirnoff N, Cumbes QJ. 1989. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057−60 doi: 10.1016/0031-9422(89)80182-7
CrossRef Google Scholar
|
[17]
|
Schat H, Sharma SS, Vooijs R. 1997. Heavy metal-induced accumulation of free proline in a metal-tolerant and a nontolerant ecotype of Silene vulgaris. Physiologia Plantarum 101:477−82 doi: 10.1111/j.1399-3054.1997.tb01026.x
CrossRef Google Scholar
|
[18]
|
Sharma SS, Dietz KJ. 2006. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany 57:711−26 doi: 10.1093/jxb/erj073
CrossRef Google Scholar
|
[19]
|
Verbruggen N, Villarroel R, Van Montagu M. 1993. Osmoregulation of a pyrroline-5-carboxylate reductase gene in Arabidopsis thaliana. Plant Physiology 103:771−81 doi: 10.1104/pp.103.3.771
CrossRef Google Scholar
|
[20]
|
Hong Z, Lakkineni K, Zhang Z, Verma DP. 2000. Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiology 122:1129−36 doi: 10.1104/pp.122.4.1129
CrossRef Google Scholar
|
[21]
|
Ghosh UK, Islam MN, Siddiqui MN, Cao X, Khan MAR. 2022. Proline, a multifaceted signalling molecule in plant responses to abiotic stress: understanding the physiological mechanisms. Plant Biology 24:227−39 doi: 10.1111/plb.13363
CrossRef Google Scholar
|
[22]
|
Aalipour H, Nikbakht A, Ghasemi M, Amiri R. 2020. Morpho-physiological and biochemical responses of two turfgrass species to arbuscular mycorrhizal fungi and humic acid under water stress condition. Journal of Soil Science and Plant Nutrition 20:566−76 doi: 10.1007/s42729-019-00146-4
CrossRef Google Scholar
|
[23]
|
Manuchehri R, Salehi H. 2014. Physiological and biochemical changes of common bermudagrass (Cynodon dactylon [L.] Pers.) under combined salinity and deficit irrigation stresses. South African Journal of Botany 92:83−88 doi: 10.1016/j.sajb.2014.02.006
CrossRef Google Scholar
|
[24]
|
Katuwal KB, Xiao B, Jespersen D. 2020. Root physiological and biochemical responses of seashore paspalum and centipedegrass exposed to iso-osmotic salt and drought stresses. Crop Science 60:1077−89 doi: 10.1002/csc2.20029
CrossRef Google Scholar
|
[25]
|
Huang S, Jiang S, Liang J, Chen M, Shi Y. 2019. Current knowledge of bermudagrass responses to abiotic stresses. Breeding Science 69:215−26 doi: 10.1270/jsbbs.18164
CrossRef Google Scholar
|
[26]
|
Zhang L, Zhong T, Xu L, Han L, Zhang X. 2015. Water deficit irrigation impacts on antioxidant metabolism associated with freezing tolerance in creeping bentgrass. Journal of the American Society for Horticultural Science 140:323−32 doi: 10.21273/JASHS.140.4.323
CrossRef Google Scholar
|
[27]
|
Khoshkholghsima NA, Rohollahi I. 2015. Evaluating biochemical response of some selected perennial grasses under drought stress in Iran. Horticulture, Environment, and Biotechnology 56:383−90 doi: 10.1007/s13580-015-0010-8
CrossRef Google Scholar
|
[28]
|
Man D, Bao Y, Han L, Zhang X. 2011. Drought tolerance associated with proline and hormone metabolism in two tall fescue cultivars. HortScience horts 46:1027−32 doi: 10.21273/HORTSCI.46.7.1027
CrossRef Google Scholar
|
[29]
|
Perlikowski D, Augustyniak A, Masajada K, Skirycz A, Soja AM, et al. 2019. Structural and metabolic alterations in root systems under limited water conditions in forage grasses of Lolium-Festuca complex. Plant Science 283:211−23 doi: 10.1016/j.plantsci.2019.02.001
CrossRef Google Scholar
|
[30]
|
Sarmast MK, Salehi H, Niazi A. 2015. Biochemical differences underlie varying drought tolerance in four Festuca arundinacea Schreb. genotypes subjected to short water scarcity. Acta Physiologiae Plantarum 37:192 doi: 10.1007/s11738-015-1942-4
CrossRef Google Scholar
|
[31]
|
Chapman C, Rossi S, Yuan B, Huang B. 2022. Differential regulation of amino acids and nitrogen for drought tolerance and poststress recovery in creeping bentgrass. Journal of the American Society for Horticultural Science 147:208−15 doi: 10.21273/JASHS05215-22
CrossRef Google Scholar
|
[32]
|
Tan M, Hassan MJ, Peng Y, Feng G, Huang L, et al. 2022. Polyamines metabolism interacts with γ-aminobutyric acid, proline and nitrogen metabolisms to affect drought tolerance of creeping bentgrass. International Journal of Molecular Sciences 23:2779 doi: 10.3390/ijms23052779
CrossRef Google Scholar
|
[33]
|
He A, Niu S, Yang D, Ren W, Zhao L, et al. 2021. Two PGPR strains from the rhizosphere of Haloxylon ammodendron promoted growth and enhanced drought tolerance of ryegrass. Plant Physiology and Biochemistry 161:74−85 doi: 10.1016/j.plaphy.2021.02.003
CrossRef Google Scholar
|
[34]
|
Shi H, Ye T, Chan Z. 2013. Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass (Cynodon dactylon (L). Pers.). Plant Physiology and Biochemistry 71:226−34 doi: 10.1016/j.plaphy.2013.07.021
CrossRef Google Scholar
|
[35]
|
Hatamzadeh A, Molaahmad Nalousi A, Ghasemnezhad M, Biglouei MH. 2015. The potential of nitric oxide for reducing oxidative damage induced by drought stress in two turfgrass species, creeping bentgrass and tall fescue. Grass and Forage Science 70:538−48 doi: 10.1111/gfs.12135
CrossRef Google Scholar
|
[36]
|
Mahdavi S, Kafi M, Fallahi E, Shokrpour M, Tabrizi L. 2017. Drought and biostimulant impacts on mineral nutrients, ambient and reflected light-based chlorophyll index, and performance of perennial ryegrass. Journal of Plant Nutrition 40:2248−58 doi: 10.1080/01904167.2016.1237650
CrossRef Google Scholar
|
[37]
|
Sheikh Mohammadi MH, Etemadi N, Arab MM, Aalifar M, Arab M, et al. 2017. Molecular and physiological responses of Iranian perennial ryegrass as affected by Trinexapac ethyl, Paclobutrazol and Abscisic acid under drought stress. Plant Physiology and Biochemistry 111:129−43 doi: 10.1016/j.plaphy.2016.11.014
CrossRef Google Scholar
|
[38]
|
Zhang N, Han L, Xu L, Zhang X. 2018. Ethephon seed treatment impacts on drought tolerance of Kentucky bluegrass seedlings. HortTechnology 28:319−26 doi: 10.21273/HORTTECH03976-18
CrossRef Google Scholar
|
[39]
|
Chen Z, Wang Z, Yang Y, Li M, Xu B. 2018. Abscisic acid and brassinolide combined application synergistically enhances drought tolerance and photosynthesis of tall fescue under water stress. Scientia Horticulturae 228:1−9 doi: 10.1016/j.scienta.2017.10.004
CrossRef Google Scholar
|
[40]
|
Li Z, Fu J, Shi D, Peng Y. 2020. Myo-inositol enhances drought tolerance in creeping bentgrass through alteration of osmotic adjustment, photosynthesis, and antioxidant defense. Crop Science 60:2149−58 doi: 10.1002/csc2.20186
CrossRef Google Scholar
|
[41]
|
Zhang J, Gao Y, Xu L, Han L. 2021. Transcriptome analysis of Kentucky bluegrass subject to drought and ethephon treatment. PLoS One 16:e0261472 doi: 10.1371/journal.pone.0261472
CrossRef Google Scholar
|
[42]
|
Saud S, Fahad S, Cui G, Chen Y, Anwar S. 2020. Determining nitrogen isotopes discrimination under drought stress on enzymatic activities, nitrogen isotope abundance and water contents of Kentucky bluegrass. Scientific Reports 10:6415 doi: 10.1038/s41598-020-63548-w
CrossRef Google Scholar
|
[43]
|
Chen ZL, Li XM, Zhang LH. 2014. Effect of salicylic acid pretreatment on drought stress responses of zoysiagrass (Zoysia japonica). Russian Journal of Plant Physiology 61:619−25 doi: 10.1134/S1021443714050057
CrossRef Google Scholar
|
[44]
|
Ma Y, Shukla V, Merewitz EB. 2017. Transcriptome analysis of creeping bentgrass exposed to drought stress and polyamine treatment. PLoS One 12:e0175848 doi: 10.1371/journal.pone.0175848
CrossRef Google Scholar
|
[45]
|
Liu N, Shen Y, Huang B. 2015. Osmoregulants involved in osmotic adjustment for differential drought tolerance in different bentgrass genotypes. Journal of the American Society for Horticultural Science 140:605−13 doi: 10.21273/JASHS.140.6.605
CrossRef Google Scholar
|
[46]
|
Li J, Ma J, Guo H, Zong J, Chen J, et al. 2018. Growth and physiological responses of two phenotypically distinct accessions of centipedegrass (Eremochloa ophiuroides (Munro) Hack.) to salt stress. Plant Physiology and Biochemistry 126:1−10 doi: 10.1016/j.plaphy.2018.02.018
CrossRef Google Scholar
|
[47]
|
Uddin MK, Juraimi AS. 2013. Salinity tolerance turfgrass: history and prospects. Scientific World Journal 2013:409413 doi: 10.1155/2013/409413
CrossRef Google Scholar
|
[48]
|
Xu R, Fujiyama H. 2013. Comparison of ionic concentration, organic solute accumulation and osmotic adaptation in Kentucky bluegrass and tall fescue under NaCl stress. Soil Science and Plant Nutrition 59:168−79 doi: 10.1080/00380768.2012.763215
CrossRef Google Scholar
|
[49]
|
Soliman WS, Sugiyama S, Abbas AM. 2018. Contribution of avoidance and tolerance strategies towards salinity stress resistance in eight C3 turfgrass species. Horticulture, Environment, and Biotechnology 59:29−36 doi: 10.1007/s13580-018-0004-4
CrossRef Google Scholar
|
[50]
|
Liu T, Zhuang L, Huang B. 2019. Metabolic adjustment and gene expression for root sodium transport and calcium signaling contribute to salt tolerance in Agrostis grass species. Plant and Soil 443:219−32 doi: 10.1007/s11104-019-04140-8
CrossRef Google Scholar
|
[51]
|
Puyang X, An M, Xu L, Han L, Zhang X. 2016. Protective effect of exogenous spermidine on ion and polyamine metabolism in Kentucky bluegrass under salinity stress. Horticulture, Environment, and Biotechnology 57:11−19 doi: 10.1007/s13580-016-0113-x
CrossRef Google Scholar
|
[52]
|
Sun S, An M, Han L, Yin S. 2015. Foliar application of 24-epibrassinolide improved salt stress tolerance of perennial ryegrass. HortScience 50:1518−23 doi: 10.21273/HORTSCI.50.10.1518
CrossRef Google Scholar
|
[53]
|
Wu W, Zhang Q, Ervin EH, Yang Z, Zhang X. 2017. Physiological mechanism of enhancing salt stress tolerance of perennial ryegrass by 24-epibrassinolide. Frontiers in Plant Science 8:1017 doi: 10.3389/fpls.2017.01017
CrossRef Google Scholar
|
[54]
|
Ahmadi F, Nazari F, Ghaderi N, Teixeira da Silva JA. 2023. Assessment of morpho-physiological and biochemical responses of perennial ryegrass to gamma-aminobutyric acid (GABA) application under salinity stress using multivariate analyses techniques. Journal of Plant Growth Regulation 42:168−82 doi: 10.1007/s00344-021-10538-5
CrossRef Google Scholar
|
[55]
|
Esmaeili S, Salehi H, Eshghi S. 2015. Silicon ameliorates the adverse effects of salinity on turfgrass growth and development. Journal of Plant Nutrition 38:1885−901 doi: 10.1080/01904167.2015.1069332
CrossRef Google Scholar
|
[56]
|
Li H, Guo H, Zhang X, Fu J. 2014. Expression profiles of Pr5CS1 and Pr5CS2 genes and proline accumulation under salinity stress in perennial ryegrass (Lolium perenne L.). Plant Breeding 133:243−49 doi: 10.1111/pbr.12140
CrossRef Google Scholar
|
[57]
|
Huang X, Chao D, Gao J, Zhu M, Shi M, et al. 2009. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes & Development 23:1805−17 doi: 10.1101/gad.1812409
CrossRef Google Scholar
|
[58]
|
Cen H, Ye W, Liu Y, Li D, Wang K, et al. 2016. Overexpression of a chimeric gene, OsDST-SRDX, improved salt tolerance of perennial ryegrass. Scientific reports 6:27320 doi: 10.1038/srep27320
CrossRef Google Scholar
|
[59]
|
Li Z, Zeng W, Cheng B, Xu J, Han L, et al. 2022. Turf quality and physiological responses to summer stress in four creeping bentgrass cultivars in a subtropical zone. Plants 11:665 doi: 10.3390/plants11050665
CrossRef Google Scholar
|
[60]
|
Rossi S, Chapman C, Huang B. 2020. Suppression of heat-induced leaf senescence by γ-aminobutyric acid, proline, and ammonium nitrate through regulation of chlorophyll degradation in creeping bentgrass. Environmental and Experimental Botany 177:104116 doi: 10.1016/j.envexpbot.2020.104116
CrossRef Google Scholar
|
[61]
|
Rossi S, Chapman C, Yuan B, Huang B. 2021. Improved heat tolerance in creeping bentgrass by γ-aminobutyric acid, proline, and inorganic nitrogen associated with differential regulation of amino acid metabolism. Plant Growth Regulation 93:231−42 doi: 10.1007/s10725-020-00681-6
CrossRef Google Scholar
|
[62]
|
Chen Y, Guo Z, Dong L, Fu Z, Zheng Q, et al. 2021. Turf performance and physiological responses of native Poa species to summer stress in northeast China. PeerJ 9:e12252 doi: 10.7717/peerj.12252
CrossRef Google Scholar
|
[63]
|
Xia F, Han Z, Zhu H, Dong K, Du L. 2020. Comparison of osmoprotectants and antioxidant enzymes of different wild Kentucky bluegrass in Shanxi province under high-temperature stress. European Journal of Horticultural Science 85:284−92 doi: 10.17660/eJHS.2020/85.4.10
CrossRef Google Scholar
|
[64]
|
Sheikh-Mohamadi MH, Etemadi N, Arab M. 2018. Correlation of heat and cold tolerance in Iranian tall fescue ecotypes with reactive oxygen species scavenging and osmotic adjustment. HortScience 53:1062−8 doi: 10.21273/HORTSCI13088-18
CrossRef Google Scholar
|
[65]
|
Sun T, Shao K, Huang Y, Lei Y, Tan L, et al. 2020. Natural variation analysis of perennial ryegrass in response to abiotic stress highlights LpHSFC1b as a positive regulator of heat stress. Environmental and Experimental Botany 179:104192 doi: 10.1016/j.envexpbot.2020.104192
CrossRef Google Scholar
|
[66]
|
Xu Y, Huang B. 2018. Transcriptomic analysis reveals unique molecular factors for lipid hydrolysis, secondary cell-walls and oxidative protection associated with thermotolerance in perennial grass. BMC Genomics 19:70 doi: 10.1186/s12864-018-4437-z
CrossRef Google Scholar
|
[67]
|
Liu M, Sun T, Liu C, Zhang H, Wang W, et al. 2022. Integrated physiological and transcriptomic analyses of two warm- and cool-season turfgrass species in response to heat stress. Plant Physiology and Biochemistry 170:275−86 doi: 10.1016/j.plaphy.2021.12.013
CrossRef Google Scholar
|
[68]
|
Zhang H, Wang Y, Wang W, Bao M, Chan Z. 2019. Physiological changes and DREB1s expression profiles of tall fescue in response to freezing stress. Scientia Horticulturae 245:116−24 doi: 10.1016/j.scienta.2018.09.052
CrossRef Google Scholar
|
[69]
|
Chang Z, Sun B, Li D. 2017. Water withholding contributes to winter hardiness in perennial ryegrass (Lolium perenne L.). European Journal for Horticultural Science 82:31−37 doi: 10.17660/eJHS.2017/82.1.4
CrossRef Google Scholar
|
[70]
|
Sarkar D, Bhowmik PC, Young-In-Kwon, Shetty K. 2009. Cold acclimation responses of three cool-season turfgrasses and the role of proline-associated pentose phosphate pathway. Journal of the American Society for Horticultural Science 134:210−20 doi: 10.21273/JASHS.134.2.210
CrossRef Google Scholar
|
[71]
|
Hoffman L, DaCosta M, Bertrand A, Castonguay Y, Ebdon JS. 2014. Comparative assessment of metabolic responses to cold acclimation and deacclimation in annual bluegrass and creeping bentgrass. Environmental and Experimental Botany 106:197−206 doi: 10.1016/j.envexpbot.2013.12.018
CrossRef Google Scholar
|
[72]
|
Gururani MA, Venkatesh J, Ganesan M, Strasser RJ, Han Y, et al. 2015. In vivo assessment of cold tolerance through chlorophyll-α fluorescence in transgenic zoysiagrass expressing mutant phytochrome A. PLoS One 10:e0127200 doi: 10.1371/journal.pone.0127200
CrossRef Google Scholar
|
[73]
|
Fan J, Zhang W, Amombo E, Hu L, Kjorven JO, Chen L. 2020. Mechanisms of environmental stress tolerance in turfgrass. Agronomy 10:522 doi: 10.3390/agronomy10040522
CrossRef Google Scholar
|
[74]
|
Wei S, Du Z, Gao F, Ke X, Li J, et al. 2015. Global transcriptome profiles of 'Meyer' zoysiagrass in response to cold stress. PLoS One 10:e0131153 doi: 10.1371/journal.pone.0131153
CrossRef Google Scholar
|
[75]
|
Dong W, Ma X, Jiang H, Zhao C, Ma H. 2020. Physiological and transcriptome analysis of Poa pratensis var. anceps cv. Qinghai in response to cold stress. BMC Plant Biology 20:362 doi: 10.1186/s12870-020-02559-1
CrossRef Google Scholar
|
[76]
|
Long S, Yan F, Yang L, Sun Z, Wei S. 2020. Responses of Manila Grass (Zoysia matrella) to chilling stress: From transcriptomics to physiology. PLoS One 15:e0235972 doi: 10.1371/journal.pone.0235972
CrossRef Google Scholar
|
[77]
|
Feng W, Li J, Long S, Wei S. 2019. A DREB1 gene from zoysiagrass enhances Arabidopsis tolerance to temperature stresses without growth inhibition. Plant Science 278:20−31 doi: 10.1016/j.plantsci.2018.10.009
CrossRef Google Scholar
|
[78]
|
Zhuang L, Yuan X, Chen Y, Xu B, Yang Z, et al. 2015. PpCBF3 from cold-tolerant Kentucky bluegrass involved in freezing tolerance associated with up-regulation of cold-related genes in transgenic Arabidopsis thaliana. PLoS One 10:e0132928 doi: 10.1371/journal.pone.0132928
CrossRef Google Scholar
|
[79]
|
Zuo ZF, Kang HG, Park MY, Jeong H, Sun HJ, et al. 2019. Overexpression of ICE1, a regulator of cold-Induced transcriptome, confers cold tolerance to transgenic Zoysia japonica. Journal of Plant Biology 62:137−46 doi: 10.1007/s12374-018-0330-1
CrossRef Google Scholar
|
[80]
|
Zhang H, Xu Q, Xu X, Liu HB, Zhi JK, et al. 2017. Transgenic tobacco plants expressing grass AstEXPA1 gene show improved performance to several stresses. Plant Biotechnology Reports 11:331−7 doi: 10.1007/s11816-017-0454-7
CrossRef Google Scholar
|
[81]
|
Zhang H, Shi Y, Liu X, Wang R, Li J, Xu J. 2018. Transgenic creeping bentgrass plants expressing a Picea wilsonii dehydrin gene (PicW) demonstrate improved freezing tolerance. Molecular Biology Reports 45:1627−35 doi: 10.1007/s11033-018-4304-7
CrossRef Google Scholar
|
[82]
|
Li X, Wang L, Li Y, Sun L, Cai S, et al. 2014. Comparative analyses of physiological responses of Cynodon dactylon accessions from Southwest China to sulfur dioxide toxicity. The Scientific World Journal 2014:916595 doi: 10.1155/2014/916595
CrossRef Google Scholar
|
[83]
|
Li X, Cen H, Peng L, Li Y, Sun L, et al. 2015. Tolerance performance of the cool-season turfgrass species Festuca ovina, Lolium perenne, Agrostis tenuis, and Poa trivialis to sulfur dioxide stress. Journal of Plant Interactions 10:75−86 doi: 10.1080/17429145.2015.1019984
CrossRef Google Scholar
|
[84]
|
Yang WZ, Fu JJ, Yang LY, Zhang X, Zheng YL, et al. 2014. Protective effects of complementary Ca2+ on low-light-induced oxidative damage in tall fescue. Russian Journal of Plant Physiology 61:818−27 doi: 10.1134/S1021443714060211
CrossRef Google Scholar
|
[85]
|
Jia H, Hou D, O’Connor D, Pan S, Zhu J, et al. 2020. Exogenous phosphorus treatment facilitates chelation-mediated cadmium detoxification in perennial ryegrass (Lolium perenne L.). Journal of hazardous Materials 389:121849 doi: 10.1016/j.jhazmat.2019.121849
CrossRef Google Scholar
|
[86]
|
Gururani MA, Ganesan M, Song IJ, Han Y, Kim JI, et al. 2016. Transgenic turfgrasses expressing hyperactive ser599Ala phytochrome a mutant exhibit abiotic stress tolerance. Journal of Plant Growth Regulation 35:11−21 doi: 10.1007/s00344-015-9502-0
CrossRef Google Scholar
|